Abstract:
A method of wirelessly communicating a packet includes generating, at a wireless device, a first packet. The first packet includes a first preamble decodable by a plurality of devices and a second preamble decodable by only a subset of the plurality of devices. The first preamble includes a first signal field, and the second preamble includes a second signal field. The method further includes setting a length indication of the first signal field to carry non-length signal information. The method further includes transmitting the first packet.
Abstract:
Methods and apparatuses for communicating over a wireless communication network are disclosed herein. One method includes forming a message that includes a plurality of data tones and one or more direct current (DC) protection tones. The method further includes setting a value for a data tone of the plurality of data tones to carry a data portion of the message. The method further includes setting a value for a DC protection tone of the one or more DC protection tones by repeating the value for the data tone as the value for the DC protection tone. The method further includes transmitting the message to one or more wireless communication devices utilizing the plurality of data tones and the one or more DC protection tones.
Abstract:
Methods and apparatus for providing wireless messages according to various tone plans can include, for example, a method of wireless communication. The method includes selecting at least one of a 242-tone resource unit (RU), associated with a 256-tone plan including 234 data tones, 8 pilot tones, 3 direct current tones, and 11 edge tones, for transmission over a 20 MHz bandwidth, or a 484-tone RU, associated with a 512-tone plan including 468 data tones, 16 pilot tones, 5 direct current tones, and 23 edge tones, for transmission over a 40 MHz bandwidth. The method further includes providing a message for transmission according to the 256-tone plan or 512-tone plan.
Abstract:
Methods and apparatuses for providing wireless messages according to various tone plans can include a system configured to generate a message according to a 2048-tone plan having 1960 data tones. The 2048-tone plan includes two identical 1024-tone plans each having 980 data tones. The system can further perform segment parsing to divide data into two data portions, each portion for transmission over one of two 80 MHz bandwidths, according to one of the two identical 1024-tone plans. The system can further perform low density parity check (LDPC) tone mapping separately on each of the two data portions. The system can further provide the message for transmission over a 160 MHz bandwidth including the two 80 MHz bandwidths.
Abstract:
Methods, devices, and computer program products for improving training field design in packets with increased symbol durations are disclosed. In one aspect, a method of transmitting a packet on a wireless communication network is disclosed. The method includes transmitting a preamble of the packet over a number (NSTS) of space-time-streams over a plurality of tones, the preamble including a number (NTF) of training fields configured to be used for channel estimation for each of the NSTS of space-time-streams, where a subset of the NSTS of space-time-streams is active on each tone. The method further includes transmitting a payload of the packet over the NSTS of space-time-streams.
Abstract:
Methods and techniques for interleaving orthogonal frequency division multiple access (OFDMA) data are disclosed. An apparatus includes an interleaver configured to interleave encoded data for at least one of a 72, 120, or 312 data tone allocation. The interleaver is further configured to generate a series of interleaved bits, for transmission based on the interleaved encoded data. The interleaver includes one or more stream interleavers corresponding to one or more spatial streams. The one or more stream interleavers are further configured to interleave the encoded data and generate the series of interleaved bits. The apparatus further includes a transmission circuit configured to transmit the series of interleaved bits via the one or more spatial streams.
Abstract:
A method for high efficiency wireless communication is provided. In one aspect, a method of high efficiency wireless communication includes generating, at an access point, a message for transmission over at least one channel. The message includes a first signal field indicative of a length of the first message after the first signal field. The message further includes a second signal field indicative of at least one channel assignment. The second signal field has a length based on a minimum allocation size. The method further includes transmitting the message to one or more wireless devices.
Abstract:
A method of providing aggregated MAC protocol data unit (AMPDU) duration control in a wireless communication device includes setting an AMPDU duration. Pass/fail statistics are collected for each MPDU of an AMPDU in a time window, W. A packet error rate (PER) difference is calculated between first and last sets of MPDUs for each AMPDU in the window. An average PER difference is calculated across all AMPDUs in the window. When the average PER difference is greater than a first threshold, then the AMPDU duration is decreased. When the difference is less than a second threshold, then the AMPDU duration is increased. When the difference is within the first and the second thresholds, then the method returns to the step of collecting for a next time window. The AMPDU duration can also be adjusted based on detected Doppler and line-of-sight transmissions.
Abstract:
Methods and apparatus for multiple user communication are provided. In one aspect, method for wireless communication includes generating a packet comprising a multiple-user multiple-input multiple-output (MU-MIMO) portion and an orthogonal frequency division multiple access (OFDMA) portion. The method further includes transmitting the packet over a packet transmission frequency bandwidth.
Abstract:
Methods and apparatus for multiple user uplink are provided. In one aspect, method for wireless communication includes receiving an assignment of a frequency bandwidth for an uplink transmission of a station. The method further includes determining whether a portion of the assigned frequency bandwidth is unavailable for the uplink transmission. The method further includes selectively transmitting the uplink transmission based on whether the portion of the assigned frequency bandwidth is unavailable.