Abstract:
A method for transmitting information of resources for use in transmission of ACK/NACK signals in a mobile communication system is disclosed. An example method for receiving ACK/NACK signals in a mobile communication system is also disclosed. When resources for transmission of data and resources for transmission of control information of the data are scheduled through virtual unit resources, the method identifies information of resources for receiving an ACK/NACK signal for transmission data mapped to information of at least one of a virtual unit resource allocated to the transmission data and a virtual unit resource allocated to control information of the transmission data, and receives the ACK/NACK signal for the transmission data through the information of resources for receiving the ACK/NACK signal.
Abstract:
A method for transmitting an uplink signal by a user equipment (UE) in a wireless communication system, and the UE therefore are discussed. The method according to one embodiment includes receiving, by the UE, control information through a physical downlink control channel (PDCCH); determining, by the UE, a physical uplink control channel (PUCCH) resource by adding a first index offset and a second index offset to a lowest index of one or more resource units used for the PDCCH, the first index offset being signaled through the PDCCH and the second index offset being signaled through higher layer signaling; and transmitting, by the UE, acknowledgment/negative-acknowledgment (ACK/NACK) information using the PUCCH resource.
Abstract:
A method of receiving a downlink signal by a user equipment in a wireless communication system; the user equipment therefore; a method of transmitting a downlink signal by a base station in a wireless communication system; and the base station therefore are discussed. The method of receiving a downlink signal by a user equipment in a wireless communication system according to one embodiment includes receiving downlink scheduling information, the downlink scheduling information including a frequency block indicator and resource allocation information for one or more transport blocks (TBs); and receiving the downlink signal including the one or more TBs via a first frequency block among multiple frequency blocks. The first frequency block is indicated by the frequency block indicator among the multiple frequency blocks. Each of the multiple frequency blocks does not overlap with other multiple frequency blocks, and has a respective hybrid automatic repeat request (HARQ) process.
Abstract:
A method for efficiently scheduling virtual resource blocks to physical resource blocks is disclosed. In a wireless mobile communication system, for distributed mapping of consecutively allocated virtual resource blocks to physical resource blocks, when nulls are inserted into a block interleaver used for the mapping, they are uniformly distributed to ND divided groups of the block interleaver, which are equal in number to the number (ND) of physical resource blocks to which one virtual resource block is mapped.
Abstract:
A method for transmitting downlink control information and a method for generating a codeword for the same are disclosed. In generating a long code having a low code rate, a basic code of which minimum distance between codes is maximized is repeated by a prescribed number of times and bits of the repeated code are adjusted. Therefore, a minimum distance condition between codes of a long code is satisfied and simultaneously the code can be simply generated. Furthermore, control information can be transmitted with a low error rate by using the generated code.
Abstract:
A method for a base station to receive an uplink transmission from a user equipment configured with multiple uplink component carriers in a wireless communications system. The method according to one embodiment includes transmitting, to the user equipment, Radio Resource Control (RRC) configuration information for a Sounding Reference Signal (SRS), the RRC configuration information including information for periodically receiving the SRS from the user equipment; transmitting, to the user equipment, Layer 2 (L2) control information indicating states of the plurality of uplink component carriers; and performing a procedure for periodically receiving the SRS from the user equipment on a corresponding uplink component carrier in use of the RRC configuration information. According to whether the corresponding uplink component carrier is in an available state or a non-available state at a time for receiving the SRS, the SRS or no SRS is received from the user equipment, respectively.
Abstract:
A method for a base station to receive an uplink transmission from a user equipment. The method according to one embodiment includes transmitting, to the user equipment, Radio Resource Control (RRC) configuration information for channel status report, the RRC configuration information including information for periodically receiving channel status report from the user equipment; transmitting, to the user equipment, Layer 2 (L2) control information indicating states of the plurality of downlink component carriers, each of the plurality of downlink component carriers being indicated as one of an active state and a non-active state; and performing a procedure for periodically receiving channel status report for a corresponding downlink component carrier from the user equipment in use of the RRC configuration information. According to whether the corresponding downlink component carrier is in the active state or the non-active state at a time for receiving a channel status report, channel status information or no channel status information is received for the corresponding downlink component carrier from the user equipment at the time, respectively.
Abstract:
A method of transmitting signals including determining, per each of the component carriers, transmission power of at least one channel for simultaneous transmission, in such a way that a total transmission power of the at least one channel does not exceed a maximum transmission power configured for a corresponding component carrier; and checking whether a total transmission power of channels over the multiple component carriers for the simultaneous transmission exceeds a total maximum transmission power configured for the communication apparatus or not. If the total transmission power of the channels exceeds the total maximum transmission power configured for the communication apparatus, transmission power of at least one PUSCH among the channels is adjusted in such a way that an adjusted total transmission power over the multiple component carriers does not exceed the total maximum transmission power.
Abstract:
A method of acquiring information on a resource region for transmitting PHICH and a method of receiving PDCCH using the same are disclosed. The resource region for transmitting the PHICH can be specified by first information corresponding to the per-subframe PHICH number and second information corresponding to a duration of the PHICH within the subframe. The first information can be specified into a form resulting from multiplying a predetermined basic number by a specific constant. And, the specific constant can be transmitted via PBCH. Moreover, the second information can be acquired from the PBCH as well.
Abstract:
A method for transmitting acknowledgement/negative acknowledgement (ACK/NACK) signals by an apparatus in a wireless communication system is discussed. The method includes spreading ACK/NACKs using spreading codes of a spreading factor, the spreading factor being one of a spreading factor 2 and a spreading factor 4; and transmitting each of the one or more physical hybrid ARQ indicator channel (PHICH) groups through a plurality of units of four resource elements, each PHICH group carrying one or more spread ACK/NACKs, wherein the number of PHICH groups for she spreading factor 2 is determined as twice of the number of PHICH groups for the spreading factor 4.