Abstract:
An access platform having a first and a second blade interconnected to a spreader member that laterally drives the blades apart or together and a sternal pad interconnected to a blade. The superior blade is pivotally coupled to the spreader member such that it naturally rises as the blades are separated. Alternatively, a vertical displacement member is operably interconnected to a blade and the spreader member and is used to vertically displace the interconnected superior blade and, thus, increase a surgeon's working space and visual access for the dissection of an internal mammary artery. A tissue retractor is interconnected to the blades to draw the soft tissue around an incision away from the surgeon's working area.
Abstract:
An aneurysm treatment device for in situ treatment of aneurysms comprises an occlusion device having a flexible, longitudinally extending elastomeric matrix member that assumes a non-linear shape to conformally fill a targeted vascular site. The occlusion device has one or more longitudinally extending filaments that can be varied to impart properties to the occlusion device.
Abstract:
Devices and methods for removing an obstruction from a blood vessel are described. The devices are deployed in a collapsed condition and are then expanded within the body. The devices are then manipulated to engage and remove the obstruction.
Abstract:
An occlusive implant delivery assembly includes a rapid response decoupling or detachment mechanism that does not effect significant migration of the implant during release. The assembly includes an occlusive implant device, such as an embolic coil, a pusher or device to carry the implant to the selected location, and an expandable coupling-decoupling mechanism for releasing the implant at the selected site. The mechanical construction provides rapid release times. In addition, the releasing mechanism generally operates without exerting any significant force on the implant, thereby avoiding any significant displacement of the implant during release.
Abstract:
A device for occlusion of a body passageway and subsequent perfusion of the body passageway with arterial return blood, cardioplegia and other fluid is disclosed. The device of the present invention is an expandable cannula comprising a flexible, expandable tubular elongate body having a first diameter and a second diameter, wherein the expandable cannula is inserted having a first diameter and then expanded to a second diameter to provide perfusion flow to the body passageway through at least one arterial return aperture provided on the distal end of the expandable tubular elongate body in fluid communication with a perfusion lumen provided within the cannula. The device may be further provided with one or more additional lumens for providing additional functions to the vessel lumen and may also include an expandable occluding member fixed at the distal end of the cannula for isolating the surgical area from the rest of the arterial system. A preferred method of use of the present invention is also disclosed wherein having a first diameter is inserted endovascularly into the vessel of a patient and advanced to a point of interest. At the point of interest, the device is expanded to a second diameter and perfusion flow to the vessel lumen is provided. Following the performance of a surgical procedure, perfusion flow is terminated and the device is removed from the vessel.
Abstract:
An improved method and apparatus for occluding a blood vessel is shown and described. A cannula adapted for insertion through a wall of a blood vessel is provided with an expandable member on a distal end which when expanded, substantially fills a cross-sectional annular area of the lumen of the blood vessel. An external clamp is coupled to the cannula and aligned with the expandable member, such that when the clamp is engaged, it moves the annular region of the blood vessel into contact with the inflatable member, the inflatable member and clamp thereby working in cooperation to occlude the blood vessel. The cannula may further be provided with a plurality of lumens extending through the cannula to corresponding openings in a distal end of the cannula, thereby allowing the perfusion of different fluids into the lumen of the blood vessel, both upstream and downstream of the internal occluding member, as well as the venting of fluid from the lumen of the blood vessel. A suture tourniquet may also be coupled to the cannula. Multiple functions are therefore performed by a compact, efficient device that is simple to use. In addition, occlusion is achieved with minimal deformation to the blood vessel, reducing the risk of trauma to the blood vessel and the creation of emboli. The intraluminal occlusion device is also securely held in a selected position, thereby reducing risk of harm to the patient from emboli and undesirable blocking of perfusion of blood to the rest of the patient's body.
Abstract:
An artery, vein, aneurysm, vascular malformation or arterial fistula is occluded through endovascular occlusion by the endovascular insertion of a platinum wire and/or tip into the vascular cavity. The vascular cavity is packed with the tip to obstruct blood flow or access of blood in the cavity such that the blood clots in the cavity and an occlusion if formed. The tip may be elongate and flexible so that it packs the cavity by being folded upon itself a multiple number of times, or may pack the cavity by virtue of a filamentary or fuzzy structure of the tip. The tip is then separated from the wire mechanically or by electrolytic separation of the tip from the wire. The wire and the microcatheter are thereafter removed leaving the tip embedded in the thrombus formed within the vascular cavity. Movement of wire in the microcatheter is more easily tracked by providing a radioopaque proximal marker on the microcatheter and a corresponding indicator marker on the wire. Electrothrombosis is facilitate by placing the ground electrode on the distal end of the microcatheter and flowing current between the microcatheter electrode and the tip.
Abstract:
An artery, vein, aneurysm, vascular malformation or arterial fistula is occluded through endovascular occlusion by the endovascular insertion of a platinum wire and/or tip into the vascular cavity. The vascular cavity is packed with the tip to obstruct blood flow or access of blood in the cavity such that the blood clots in the cavity and an occlusion if formed. The tip may be elongate and flexible so that it packs the cavity by being folded upon itself a multiple number of times, or may pack the cavity by virtue of a filamentary or fuzzy structure of the tip. The tip is then separated from the wire mechanically or by electrolytic separation of the tip from the wire. The wire and the microcatheter are thereafter removed leaving the tip embedded in the thrombus formed within the vascular cavity. Movement of wire in the microcatheter is more easily tracked by providing a radioopaque proximal marker on the microcatheter and a corresponding indicator marker on the wire. Electrothrombosis is facilitate by placing the ground electrode on the distal end of the microcatheter and flowing current between the microcatheter electrode and the tip.