Abstract:
Methods, apparatuses, and computer-readable media for classification of basic service sets (BSS) based on transmission opportunity holder addresses are disclosed. An apparatus of a high-efficiency (HE) station is disclosed comprising processing circuitry. The processing circuitry may be configured to if the frame is not classified as an intra basic service set (BSS) or inter BSS, and the frame comprises a transmission holder (TXOP) address: classify the frame as the inter-BSS frame, if the TXOP address matches a first stored TXOP address associated with a basic network allocation vector (NAV) and the first stored TXOP address is classified as an inter basic service set (BSS) frame, or classify the frame as an intra-BSS frame if the TXOP address matches a second stored TXOP address associated with a non-zero intra-BSS NAV.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of Multi User (MU) resource allocation. For example, an apparatus may include circuitry and logic configured to cause a wireless station to transmit a short feedback trigger frame including a first allocation of opportunities for short feedback from associated stations, and a second allocation of opportunities for short feedback from unassociated stations; to process a plurality of short feedbacks from a plurality of stations according to the first and second allocations, the plurality of short feedbacks to indicate uplink resource requests; based on the plurality of short feedbacks, to transmit a MU trigger frame to allocate uplink resources to the plurality of stations; and to process uplink transmissions from the plurality of stations according to the uplink resources.
Abstract:
Uplink requests for bandwidth and/or other types of communication resources are provided. In some embodiments, a communication device can access a mapping between quality of service (QoS) metrics and communication resources. The communication device can determine a value of the QoS (e.g., a guaranteed rate, a defined traffic priority, an amount of buffered data, etc.) and can determine a communication resource element using at least the mapping and the value of the QoS metric. The communication device also can configure an uplink request for communication resources based at least on the communication resource element. In addition, the communication device can send the uplink request.
Abstract:
Techniques for power saving by remote wireless mobile devices are provided, in particular by stations (STAs) during downlink (DL) multiple-user multiple-input and multiple-output (MU-MIMO) transmissions in an Institute of Electrical and Electronics Engineers (IEEE) 802.11ay network when reverse direction (RD) transmissions are either enabled and not enabled. Various embodiments enable each STA in a group of STAs to determine an order in which the STAs are requested to send a block acknowledgement (BACK) and which STAs will be granted an RD transmission. Further, a duration of each RD transmission is provided to each STA. Based on the provided information, each STA can determine times to enter a power saving mode. Other embodiments are described and claimed.
Abstract:
Described herein are methods and devices in which agreements between a wireless station and an access point are transferred from one access point to another during a basic service set transition within an extended service set. The described techniques define methods for reducing the frame exchanges needed after association to negotiate certain parameters such as block acknowledgement agreements.
Abstract:
This disclosure describes methods, wireless stations, and systems related to a flexible connectivity framework that controls transmitting power levels of wireless stations to a common access point based on information provided by the access point. For example, a method may be provided, wherein the method includes performing the operations of: determining a transmitting power level of a wireless access point; determining a target receiving power level of the wireless access point; transmitting an indication of the transmitting power level and the target receiving power level of the access point to one or more wireless stations; and receiving one or more data transmissions from the one or more wireless stations.
Abstract:
For example, an apparatus may include a segment parser to parse scrambled data bits of a PPDU into a first plurality of data bits and a second plurality of data bits, the PPDU to be transmitted in an OFDM transmission over an aggregated bandwidth comprising a first channel in a first frequency band and a second channel in a second frequency band; a first baseband processing block to encode and modulate the first plurality of data bits according to a first OFDM MCS for transmission over the first channel in the first frequency band; and a second baseband block to encode and modulate the second plurality of data bits according to a second OFDM MCS for transmission over the second channel in the second frequency band.
Abstract:
Methods and apparatus for multi-destination wireless transmissions as disclosed. An example multi-destination transmitter includes a direction determiner to determine directions for wireless transmission of data to destination devices and a transmission handler to: select a subset of the destination devices that are associated with different ones of a plurality of antennas as indicated by the directions determined by the direction determiner; and transmit the data to the subset of the destination devices via the plurality of antennas.
Abstract:
Apparatuses, computer readable media, and methods for control field for null data packet feedback report trigger are disclosed. A station is disclosed, the station comprising processing circuitry configured to: decode a media access control (MAC) protocol data unit (MPDU) comprising an A-control field of type null data packet (NDP) feedback report poll comprising a feedback type field and an indication of a resource unit (RU). The processing circuitry further configured to determine whether the station is scheduled to respond to the A-control field of type NDP feedback report poll, and if the station is scheduled to respond to the A-control field of type NDP feedback report poll, configure the station to transmit a response to a feedback type indicated by the value of the feedback type field on the RU. Apparatuses, computer readable media, and methods for short block acknowledgment with NDP are disclosed.
Abstract:
Apparatuses, computer readable media, and methods for control field for null data packet feedback report trigger are disclosed. A station is disclosed, the station comprising processing circuitry configured to: decode a media access control (MAC) protocol data unit (MPDU) comprising an A-control field of type null data packet (NDP) feedback report poll comprising a feedback type field and an indication of a resource unit (RU). The processing circuitry further configured to determine whether the station is scheduled to respond to the A-control field of type NDP feedback report poll, and if the station is scheduled to respond to the A-control field of type NDP feedback report poll, configure the station to transmit a response to a feedback type indicated by the value of the feedback type field on the RU. Apparatuses, computer readable media, and methods for short block acknowledgment with NDP are disclosed.