Abstract:
A tiled display having pixels arranged in rows and columns, and including first and second tiles. The tiles comprise a substrate carrying a matrix of pixels arranged at a pixel pitch. The substrates comprise an edge extending between opposing faces in a depth direction. The substrate edges have a complementary shape, and face one another to establish a seam. The pixel pitch is maintained across the seam. Pixels of the second tile are not interposed between pixels of the first tile. The complementary shape includes a segment of the seam being oblique to the pixel rows, or the substrate edge of the first tile profiled in the depth direction whereby at least a section of the edge is non-perpendicular to the faces. The tiled display can maintain the pixel pitch at the seams at high resolutions (e.g., pixel pitch less than 0.5 mm).
Abstract:
A flexible substrate are disclosed comprising an amorphous inorganic composition, wherein the substrate has a thickness of less than about 250 μm and has at least one of: a) a brittleness ratio less than about 9.5 (μm)−1/2, or b) a fracture toughness of at least about 0.75 MPa·(m)1/2. Electronic devices comprising such flexible devices are also disclosed. Also disclosed is a method for making a flexible substrate comprising selecting an amorphous inorganic material capable of forming a substrate having a thickness of less than about 250 μm and having at least one of: a) a brittleness ratio of less than about 9.5 (μm)−1/2, or b) a fracture toughness of at least about 0.75 MPa·(m)1/2; and then forming a substrate from the selected inorganic material.
Abstract:
A glass ribbon coated with a flexible material, the flexible coating forming a flexible web portion that extends from an edge of the glass ribbon at least one millimeter. The flexible web portion can be used to facilitate handling of the glass ribbon in a manufacturing process, and may include registration markings, or perforations, that further facilitate precise positioning of the ribbon.
Abstract:
A method of forming a flexible glass-polymer laminate structure includes heating a polymer layer to an elevated temperature of greater than 20° C. and below a working temperature of a flexible glass substrate adjacent the polymer layer. The flexible glass substrate has a thickness of no more than about 0.3 mm. The flexible glass substrate is shaped with the polymer layer at the elevated temperature. The polymer layer is cooled below the elevated temperature such that the flexible glass-polymer laminate structure maintains a non-planar formation.
Abstract:
A method for forming ion-exchanged regions in a glass article by contacting an ion source with at least one surface of the glass article, forming a first ion-exchanged region in the glass article by heating a first portion of the glass article with a laser, and forming a second ion-exchanged region in the glass article. Characteristics of the first ion-exchanged region may be different from characteristics of the second ion-exchanged region. A depth of the ion-exchanged region may be greater than 1 μm. A glass article including a first ion-exchanged region, and a second ion-exchanged region having different characteristics from the first ion-exchanged region. The thickness of the glass article is less than or equal to about 0.5 mm.
Abstract:
A method for forming ion-exchanged regions in a glass article by contacting an ion source with at least one surface of the glass article, forming a first ion-exchanged region in the glass article by heating a first portion of the glass article with a laser, and forming a second ion-exchanged region in the glass article. Characteristics of the first ion-exchanged region may be different from characteristics of the second ion-exchanged region. A depth of the ion-exchanged region may be greater than 1 μm. A glass article including a first ion-exchanged region, and a second ion-exchanged region having different characteristics from the first ion-exchanged region. The thickness of the glass article is less than or equal to about 0.5 mm.
Abstract:
An optical waveguide device includes a flexible glass optical waveguide structure including a flexible glass substrate having a thickness of no greater than about 0.3 mm The flexible glass substrate has at least one waveguide feature that transmits optical signals through the flexible glass substrate. The at least one waveguide feature is formed of glass material that forms the flexible glass substrate. An electrical device is located on a surface of the flexible glass substrate.
Abstract:
Packages and methods of packaging a plurality of glass sheets provide a stack of glass sheets with an interleaf protective sheet positioned between each adjacent pair of glass sheets. An outer portion of each interleaf protective sheet is bent over a portion of the peripheral edge of one of a corresponding adjacent pair of glass sheets to discourage relative shifting of the glass sheets with respect to one another. The stack of glass sheets are sandwiched between pressure members of an outer housing such that the pressure members each apply a support pressure that is distributed over an outer surface of a corresponding one of the pair of outermost glass sheets of the stack of glass sheets.
Abstract:
Disclosed are controlled chemical etching processes used to modify the geometry of surface flaws in thin glass substrates and glass substrate assemblies formed therefrom, and in particular glass substrates suitable for the manufacture of active matrix displays that are essentially free of alkali metal oxides such as Na2O, K2O and Li2O.
Abstract:
An apparatus for redirecting a glass ribbon assembly from a first glass conveyance path to a second glass conveyance path. The apparatus includes a glass ribbon assembly source for providing the glass ribbon assembly including a flexible glass substrate that includes a first surface and a second surface that extend between a first edge and a second edge, first and second handling tabs affixed to the flexible glass substrate edges, and a primary roll member located downstream of the glass ribbon assembly source. The first glass conveyance path extends from the glass ribbon assembly source to the primary roll member, and the second glass conveyance path extends from the primary roll member in a downstream direction. Contact surfaces of the primary roll member are tangential to the first and second glass conveyance paths, and the second glass conveyance path is non-planar with the first glass conveyance path.