Abstract:
The present application discloses an array substrate comprising a first substrate, a first electrode on the first substrate, a passivation layer on a side of the first electrode distal to the first substrate, the passivation layer comprising a plurality of first vias, each of which corresponds to a different part of the first electrode, an electron emission source layer on a side of the first electrode distal to the first substrate comprising at least one electron emission source in each of the plurality of first vias, and a dielectric layer on a side of the first electrode distal to the first substrate comprising a plurality of dielectric blocks corresponding to the plurality of first vias, at least a portion of each of the plurality of dielectric blocks in each of the plurality of first vias. The at least one electron emission source comprises a first portion having a first end and a second portion having a second end. The first end is in contact with the first electrode, the first portion is within a corresponding one of the plurality of dielectric blocks. The second portion and the second end are outside the corresponding one of the plurality of dielectric blocks.
Abstract:
An array substrate and a manufacturing method thereof and a display are disclosed. The array substrate includes a base substrate, a plurality of sub-pixels disposed on the base substrate, and a phase shift pattern disposed on the base substrate to separate the sub-pixels; the phase shift pattern is disposed to allow light passing through the phase shift pattern to undergo phase shift, and positions corresponding to the phase shift pattern are substantially opaque to light. Lateral light leakage is reduced by the phase shift pattern, and transmission rate of products become uniform, and therefore stability of products are increased.
Abstract:
Embodiments of the present disclosure provide a display panel, a manufacturing method therefor, and a display apparatus. The display panel includes a first substrate and a second substrate which are aligned, liquid crystals are filled between the first substrate and the second substrate, the first substrate and the second substrate which are aligned have a display region and a peripheral region surrounding the display region, the peripheral region is provided with a frame sealing adhesive located between the first substrate and the second substrate and surrounding the display region, and the frame sealing adhesive is configured to seal the liquid crystals.
Abstract:
A scan circuit is provided. The scan circuit includes a plurality of stages. A respective stage of the scan circuit includes a respective scan unit configured to provide a control signal to one or more rows of subpixels. A respective scan unit includes a first subcircuit, a second subcircuit, a third subcircuit, a fourth subcircuit. A pull-up node is coupled to the second subcircuit, the third subcircuit, and the fourth subcircuit. A pull-down node is coupled to the second subcircuit, the third subcircuit. The denoising subcircuit is coupled to a pull-up node and the input terminal, or coupled between a third power supply voltage terminal and the pull-down control node.
Abstract:
A thin film transfer vehicle includes a base frame, a bearing frame and a baffle disposed on the base frame; the bearing frame has multiple support layers from top to bottom, and the multiple support layers are configured to carry multiple thin films respectively; the baffle is disposed in front of the bearing frame along a moving direction of the transfer vehicle, and multiple openings are disposed on the baffle, which are disposed in multiple rows and columns; and the support layers correspond to positions between two adjacent rows of the openings.
Abstract:
Provided are a display panel and a driving method thereof, and a display device. The display panel includes: a base substrate; and multiple subpixels provided at the base substrate, at least one of the multiple subpixels including a reflective electrode, wherein the reflective electrode at least includes a first reflective electrode and a second reflective electrode insulated and spaced apart from each other, the first reflective electrode is provided with a first through hole, the second reflective electrode is provided with a second through hole, and an area of the first through hole is different from an area of the second through hole.
Abstract:
An electrostatic prevention circuit, an array substrate and a display device are provided. The electrostatic prevention circuit includes an electrostatic prevention sub-circuit, and the electrostatic prevention sub-circuit includes a thin film transistor and a capacitor; a gate electrode of the thin film transistor is connected to the capacitor, and the thin film transistor is controlled by a signal passing through the capacitor.
Abstract:
A pixel structure of flat panel detection device, a flat panel detection device, and a camera system. The pixel structure of the flat panel detection device includes a photodiode configured to collect optical signals and convert the optical signals into electrical signals, the photodiode includes a positive terminal and a negative terminal, the negative terminal is connected to a bias voltage signal terminal; a signal amplification circuit, a signal input terminal of the signal amplification circuit is connected to the negative terminal of the photodiode, a signal output terminal of the signal amplification circuit is connected to a first node; a first switching transistor, a control electrode of the first switching transistor is connected to a scanning signal line, a first terminal of the first switching transistor is connected to a data signal line, and a second terminal of the first switching transistor is connected to the first node.
Abstract:
The present disclosure provides a method for recognizing crackles, including: processing collected lung sound signal to extract moist rale component for a respiratory cycle; calculating a power spectrum of the moist rale component, and according to the power spectrum, calculating at least one of a ratio of power of each preset frequency band in a plurality of preset frequency bands to total power of all preset frequency bands and the total power of all the preset frequency bands and selecting at least one of them as a frequency domain parameter, and/or calculating at least one of a ratio of the number of occurrence of moist rale in the late inspiratory phase to the total number of occurrence of moist rale in the entire inspiratory phase and a maximum amplitude of moist rale in the entire inspiratory phase and selecting at least one of them as a time domain parameter; inputting the frequency domain parameter and/or the time domain parameter serving as a parameter feature into a classification model for recognition. The present disclosure further provides a system for recognizing crackles. The method and the system can improve the accuracy for recognizing crackles.
Abstract:
An intelligent fabric includes: a base layer with vent holes, a thermal insulation layer on the base layer and capable of being moved relative to the base layer, an instruction generator configured to generate a switch instruction, and a controller connected to the instruction generator and the thermal insulation layer, and configured to control the thermal insulation layer to be moved relative to the base layer in accordance with the switch instruction, so as to switch the thermal insulation layer between a state where the thermal insulation layer covers the vent holes completely and a state where the thermal insulation layer does not cover the vent holes, or among the state where the thermal insulation layer covers the vent holes completely, a state where the thermal insulation layer partially covers the vent holes, and the state where the thermal insulation layer does not cover the vent holes.