Abstract:
An electronic device may be provided with wireless circuitry. The wireless circuitry may include an antenna. The electronic device may have a housing in which control circuitry and radio-frequency transceiver circuitry is mounted. The transceiver circuitry may be used to transmit and receive radio-frequency signals with the antenna. The housing may have a housing wall with a locally thinned portion aligned with the antenna. The antenna may have a sheet metal layer attached to a plastic cavity with a layer of adhesive. Recesses in a printed circuit may receive prongs formed from a sheet metal layer. The plastic carrier may have cavities separated by ribs. The sheet metal layer may form a planar inverted-F antenna resonating element, a ground plane, a return path between the resonating element and ground plane, and a feed path that extends along one of the ribs and into an opening in the printed circuit.
Abstract:
An electronic device housing may have a base unit and a lid. Aligned antenna windows may be formed on opposing upper and lower surfaces of the base unit along a hinge. Antenna structures that are located between respective upper and lower antenna windows on the upper and lower surfaces may be based on a pair of antennas that are coupled to switching circuitry that can select which antenna to switch into use or may be based on an antenna having a position that may be adjusted relative to the upper and lower antenna windows using a mechanical coupling to the lid or using a positioner. A sensor such as a lid position sensor may monitor how the lid is positioned relative to the base unit. Information from the lid position sensor may be used in adjusting the antenna structures to optimize performance.
Abstract:
An electronic device may be provided with an antenna. The antenna may have an antenna resonating element and an antenna ground. The antenna resonating element may be formed from peripheral conductive housing structures. An audio jack or other connector may be mounted in an opening in the peripheral conductive housing structures. The audio jack may overlap the antenna ground. Contacts in the audio jack may be coupled to an interference mitigation circuit. The interference mitigation circuit may include capacitors coupled to the ground and inductors coupled between the contacts and the capacitors. Radio-frequency signal blocking inductors may be coupled between the interference mitigation circuit and respective ports in an audio circuit.
Abstract:
An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more dual-frequency dual-polarization patch antennas. Each patch antenna may have a patch antenna resonating element that lies in a plane and a ground that lies in a different parallel plane. The patch antenna resonating element may have a first feed located along a first central axis and a second feed located along a second central axis that is perpendicular to the first central axis. The patch antenna resonating element may be rectangular, may be oval, or may have other shapes. A shorting pin may be located at an intersecting point between the first and second axes. The patch antennas may be used in beam steering arrays. The patch antennas may be used for wireless power transfer at microwave frequencies or other frequencies and may be used to support millimeter wave communications.
Abstract:
An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from peripheral conductive structures running along the edges of a device housing. The peripheral conductive structures may form housing sidewalls. A slot may be machined into a metal housing that separates the housing sidewalls from a planar rear housing portion that forms a ground for an antenna. The slot may be filled with plastic filler. A parasitic antenna resonating element arm that supports an antenna resonance at high band frequencies may be embedded within the plastic filler. The parasitic antenna resonating element may be formed from a portion of the planar rear housing portion.
Abstract:
An electronic device may have wireless circuitry and components such as sensors. The electronic device may have a metal housing having first and second planar rear wall portions separated by a gap. Conductive structures may bridge the gap to electrically couple the first and second rear wall portions. The wireless circuitry may include a hybrid slot inverted-F antenna. The antenna may have an inverted-F antenna resonating element formed from peripheral housing structures that are separated from the second rear wall portion by an opening. The opening may form a C-shaped slot antenna resonating element for the antenna. The sensors may include a fingerprint sensor. The fingerprint sensor may be coupled to a button member in a button. The fingerprint sensor and other portions of the button may overlap the second planar rear wall portion to minimize interference with antenna operation.
Abstract:
Electronic devices may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may include antenna resonating elements such as dual-band antenna resonating elements that resonate in first and second communications bands. The antenna structures may also contain parasitic antenna elements such as elements that are operative in only the first or second communications band and elements that are operative in both the first and second communications bands. The antenna resonating elements and parasitic elements may be mounted on a common dielectric carrier. The dielectric carrier may be mounted within a slot or other opening in a conductive element. The conductive element may be formed from conductive housing structures in an electronic device such as a portable computer. The portable computer may have a clutch barrel with a dielectric cover. The dielectric cover may overlap and cover the slot and the dielectric carrier.
Abstract:
An electronic device may be provided with an antenna. The antenna may have an antenna resonating element and an antenna ground. An adjustable inductor may be coupled between the antenna resonating element and the antenna ground. An antenna feed may have a positive feed terminal coupled to the antenna resonating element and a ground antenna feed coupled to the antenna ground. The adjustable inductor may have first and second inductors coupled to respective first and second ports of a switch. The switch may have a third port coupled to the antenna ground. A capacitor may have a first terminal coupled to ground and a second terminal coupled to the first inductor at the first port of the switch. An inductor may be coupled between the antenna resonating element and antenna ground at a location between the adjustable inductor and the antenna feed.
Abstract:
An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas. The antennas may include phased antenna arrays each of which includes multiple antenna elements. Phased antenna arrays may be mounted along edges of a housing for the electronic device, behind a dielectric window such as a dielectric logo window in the housing, in alignment with dielectric housing portions at corners of the housing, or elsewhere in the electronic device. A phased antenna array may include arrays of patch antenna elements on dielectric layers separated by a ground layer. A baseband processor may distribute wireless signals to the phased antenna arrays at intermediate frequencies over intermediate frequency signal paths. Transceiver circuits at the phased antenna arrays may include upconverters and downconverters coupled to the intermediate frequency signal paths.
Abstract:
Electronic devices may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may include a dual arm inverted-F antenna resonating element and an antenna ground. An antenna feed may be coupled between the inverted-F antenna resonating element and the antenna ground. An adjustable component such as an adjustable inductor may be coupled between the inverted-F antenna resonating element and the antenna ground in parallel with the antenna feed. The adjustable component may be operable in multiple states such as an open circuit state, a short circuit state, and a state in which the adjustable component exhibits a non-zero inductance. Antenna bandwidth can be broadened by coupling a loop antenna resonating element across the antenna feed. A portion of the antenna ground may overlap the loop antenna resonating element to further enhance antenna bandwidth.