Abstract:
A drug delivery balloon is provided comprising a balloon having a surface, and a coating disposed on at least a portion of the balloon surface, the coating including an cytostatic therapeutic agent, an excipient, and a plasticizer. In accordance with the present subject matter, at least 30% of the coating transfers from the balloon surface within two minutes after inflation of the balloon. Alternatively, at least 30% of the coating transfers from the balloon surface within one minute after inflation. The coating results in an effective pharmacokinetic profile of an cytostatic therapeutic agent in a vasculature or target tissue.
Abstract:
A medical device includes a polymer scaffold crimped to a catheter having an expansion balloon. The scaffold, after being deployed by the balloon, provides a crush recovery of about 90% after the diameter of the scaffold has been pinched or crushed by 50%. The scaffold has a pattern including an asymmetric closed cell connecting links connecting the closed cells.
Abstract:
A medical device includes a polymer scaffold crimped to a catheter having an expansion balloon. The scaffold, after being deployed by the balloon, provides a crush recovery of about 90% after the diameter of the scaffold has been pinched or crushed by 50%. The scaffold has a pattern including an asymmetric closed cell connecting links connecting the closed cells.
Abstract:
Acceleration of the endothelialization process on implantable medical devices having at least one blood-contacting surface is achieved by a microscale pattern of sub-sections of EC-inductive coatings or EC-conductive coatings and nano/macro textured surfaces. The EC-inductive coating and EC-conductive coating can be applied either on the entire surface of the blood-contacting surface or selective placed on the blood-contacting surface, for example, in particular patterns. In this regard, the EC-conductive and EC-inductive coatings can be selectively placed relative to the textured surface to achieve a desired pattern of texture surface to coatings.
Abstract:
Bioabsorbable scaffolds having high crush recoverability, high fracture resistance, and reduced or no recoil due to self expanding properties at physiological conditions are disclosed. The scaffolds are made from a random copolymer of PLLA and a rubbery polymer such as polycaprolactone.
Abstract:
A medical device includes a polymer scaffold crimped to a catheter having an expansion balloon. The scaffold has a structure that produces a low late lumen loss when implanted within a peripheral vessel and also exhibits a high axial fatigue life. In a preferred embodiment the scaffold forms ring structures interconnected by links, where a ring has 12 crowns and at most two links connecting adjacent rings.
Abstract:
A method of manufacturing a stent is disclosed. The stent includes a minimum crimped diameter such that in the minimum crimped diameter, a pair of stent rings, between which marker support structures reside, do not make contact with the marker support structures. The crimped profile of the stent of the present invention can be as small as the crimped profile of a same stent but without the marker support structures.
Abstract:
Bioabsorbable scaffolds having high crush recoverability, high fracture resistance, and reduced or no recoil due to self expanding properties at physiological conditions are disclosed. The scaffolds are made from a random copolymer of PLLA and a rubbery polymer such as polycaprolactone.
Abstract:
A medical device includes a polymer scaffold crimped to a catheter having an expansion balloon. The scaffold, after being deployed by the balloon, provides a crush recovery of about 90% after the diameter of the scaffold has been pinched or crushed by 50%. The scaffold has a pattern including an asymmetric closed cell connecting links connecting the closed cells.