Abstract:
A hand rehabilitation device includes a hand support assembly and a drive mechanism. The hand support assembly being movable to flex and extend the metacarpophalangeal and proximal interphalangeal joints of a user's hand independently.
Abstract:
This disclosure describes, among other embodiments, systems and related methods for selecting electrode combinations to be used during nerve pacing procedures. A first set of electrode combinations of a nerve pacing system, such as a phrenic nerve pacing system for diaphragm activation, may be mapped (or tested) to determine the location of the electrode combinations relative to a target nerve. Once the general location of the target nerve is known, a more localized second set of electrode combinations may be tested to determine the most suitable electrode combinations for nerve stimulation. At various stages of the mapping process, electrode combinations that are non-optimal may be discarded as candidates for use in a nerve pacing procedure. The systems and methods described herein may allow for the selection of electrode combinations that are most suitable for stimulation of the left and right phrenic nerves during diaphragm pacing.
Abstract:
This disclosure describes, among other embodiments, systems and related methods for selecting electrode combinations to be used during nerve pacing procedures. A first set of electrode combinations of a nerve pacing system, such as a phrenic nerve pacing system for diaphragm activation, may be mapped (or tested) to determine the location of the electrode combinations relative to a target nerve. Once the general location of the target nerve is known, a more localized second set of electrode combinations may be tested to determine the most suitable electrode combinations for nerve stimulation. At various stages of the mapping process, electrode combinations that are non-optimal may be discarded as candidates for use in a nerve pacing procedure. The systems and methods described herein may allow for the selection of electrode combinations that are most suitable for stimulation of the left and right phrenic nerves during diaphragm pacing.
Abstract:
A vector light sensor (VLS) includes a substrate and a sensor structure. The substrate includes a major surface. The sensor structure includes a pyramid structure, light-sensitive areas, and electrical contacts. The pyramid structure forms at least a portion of a body of the sensor structure and has predefined angles between the major surface of the substrate and a plurality of sidewalls of the pyramid. The light-sensitive areas are formed on two or more of the plurality of sidewalls of the pyramid structure. The electrical contacts are electrically coupled to the light-sensitive areas. Information about the information about intensity and direction of an incident light beam can be extracted by comparing signals from two or more of the light-sensitive areas.
Abstract:
A method of inhibiting phosphatidyl inositol-3 kinase (PI3 kinase), comprising: contacting the PI3 kinase with an effective amount of a compound or pharmaceutically acceptable salt of the formula below, wherein the variables R1, R2, W1, W2, W3, W4, W5, are W6 are defined herein.
Abstract:
Electrode structures for transvascular nerve stimulation combine electrodes with an electrically-insulating backing layer. The backing layer increases the electrical impedance of electrical paths through blood in a lumen of a blood vessel and consequently increases the flow of electrical current through surrounding tissues. The electrode structures may be applied to stimulate nerves such as the phrenic, vagus, trigeminal, obturator or other nerves.
Abstract:
The invention, in one aspect, relates to an intravascular electrode system. The system comprises one or more electrodes supported on an elongated resiliently flexible support member, and the support member may be used to introduce the electrodes into a blood vessel. As the support member is introduced into the blood vessel the support member bends to follow the path of the blood vessel.
Abstract:
Electrode structures for transvascular nerve stimulation combine electrodes with an electrically-insulating backing layer. The backing layer increases the electrical impedance of electrical paths through blood in a lumen of a blood vessel and consequently increases the flow of electrical current through surrounding tissues. The electrode structures may be applied to stimulate nerves such as the phrenic, vagus, trigeminal, obturator or other nerves.
Abstract:
Electrode structures for transvascular nerve stimulation combine electrodes with an electrically-insulating backing layer. The backing layer increases the electrical impedance of electrical paths through blood in a lumen of a blood vessel and consequently increases the flow of electrical current through surrounding tissues. The electrode structures may be applied to stimulate nerves such as the phrenic, vagus, trigeminal, obturator or other nerves.