Abstract:
Enhanced carrier aggregation may require development of mechanisms to enable carrier aggregation for an increased number of component carriers. In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus for wireless communication are provided. The apparatus may be a user equipment. The apparatus may receive, with an uplink grant, a request for channel state information. The apparatus determines the number of bits comprising the request. The determined number of bits may be based on or associated with the number of serving cells configured for the apparatus. The apparatus reports the channel state information in response to the request based on information in the determined number of bits.
Abstract:
Various aspects are described relating to wireless communications of a second type of traffic data for small data transmissions. A first indication of control channel resources can be received from a network entity, wherein the control channel resources are defined by a radio access technology to include control data associated with a first type of traffic data. A control channel can be received from the network entity over the control channel resources, wherein the control channel includes a second type of traffic data, wherein the second type of traffic data includes a comparatively smaller data payload than the first type of traffic data. The second type of traffic data can be decoded from the control channel without decoding control data from the control channel.
Abstract:
Certain aspects of the present disclosure provide techniques that may be used to help enable low latency communications between a user equipment (UE) and a base station (BS) using quick uplink channels that enable a reduced transmission time interval (TTI). Additionally, certain aspects of the present disclosure provide techniques for managing communications in a wireless communication system, for example, by using enhanced downlink control channels.
Abstract:
Various aspects described herein relate to communicating in a wireless network. An uplink resource grant can be received from a network entity for communicating in the wireless network. A transmission time interval (TTI) for an uplink transmission within a subframe based on the uplink resource grant can be determined, wherein the TTI comprises one or more symbols which are a subset of a plurality of symbols in the subframe. Communications can be transmitted to the network entity over resources specified in the uplink resource grant during the TTI.
Abstract:
A data structure for managing user equipment communications in a wireless communication system is presented. In some examples, the data structure may include one or more resource element blocks into which a frequency bandwidth of a downlink channel is divided within a symbol that defines a transmission time interval in a downlink subframe. Furthermore, the data structure may include a control region and a data region within at least one resource element block of the one or more resource element blocks. Additionally, the data structure may include a downlink resource grant, located within the control region, for a user equipment served by the downlink channel. In an additional aspect, a network entity and method for generating the example data structure are provided.
Abstract:
A method of wireless communication includes generating a unique position reference signal (PRS) for a remote radio head having a same physical cell identity (PCI) as a macro eNodeB. The unique PRS is based on a virtual cell ID and/or unique cell global identification (CGI) of the remote radio head such that the unique PRS is different from a PRS of the macro eNodeB. The PRS of the macro eNodeB is based on the PCI. The method also includes transmitting the unique PRS.
Abstract:
The present disclosure provides methods and apparatuses for multi-carrier transmissions over adjacent channels that reduce self-jamming due to asymmetric interference. In an aspect, a large bandwidth load-base equipment (LBE) carrier may be provided such that CCA is performed jointly over the entire bandwidth. In another aspect, additional CCA timeslots may be used to synchronize the two carriers. In a further aspect, an extended CCA may be performed on a primary unlicensed carrier while a simple CCA may be performed on a secondary unlicensed carrier. In yet another aspect, LBE may be deployed on some carriers while frame-base equipment (FBE) may be deployed on other carriers.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a user equipment that receives interference cancelation information from a base station. Various aspects are described for employing interference cancelation information perform interference suppression in the presence of interference associated with different component carriers when employing carrier aggregation, small cell discovery signals, variations in data channel transmissions associated with certain transmission modes, and higher order QAM rates.
Abstract:
Aspects described herein relate to scheduling data for transmission over a plurality of component carriers. A base station can determine to increase bandwidth utilization over at least one component carrier of a plurality of component carriers assigned to a plurality of user equipments (UE). The base station can assign a plurality of resource blocks over the at least one component carrier to one or more fictitious UE identifiers and transmit data signals over the plurality of resource blocks to increase bandwidth utilization over the at least one component carrier. One or more network nodes may determine the one or more fictitious UE identifiers and may determine related resource assignment for canceling interference from data transmitted for the fictitious UE identifiers, performing channel estimation, etc.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus configures a radio frame with a subframe configuration based on a restriction, the radio frame being part of a sequence of a plurality of radio frames. The restriction excludes the radio frame from conforming to a set of subframe configurations based on at least one of a position of the radio frame within the sequence of radio frames or a type of information to be transmitted or received in the radio frame. The apparatus then communicates with a user equipment (UE) during the radio frame based on the subframe configuration.