Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus determines an interference type between a time division duplex (TDD) configuration subframe of a serving cell and a corresponding TDD configuration subframe of a neighboring cell, and sets a transmit power for an apparatus in the serving cell based on the interference type. The apparatus in the serving cell may be a user equipment (UE), in which case the apparatus applies a set of uplink (UL) open loop power control parameters for the UE. The apparatus in the serving cell may be a base station (eNB), in which case a DL transmit power is set for the eNB. Depending on the interference type, the DL transmit power may be a fixed, full power DL transmission or an adjusted DL transmission.
Abstract:
An apparatus may use inactive uplink portions of a downlink CC to transmit SRS to an eNB. At times there may be a collision between the SRS transmission and uplink transmissions or downlink transmissions on another CC. The apparatus receives a carrier aggregation configuration for a first downlink CC and a second CC, determines to transmit an uplink transmission on the second CC or to receive a downlink transmission on the second CC, determines that the SRS would at least partially collide with the uplink transmission or the downlink transmission, and determines to adjust at least one of the uplink transmission, the SRS transmission, or reception of the downlink transmission based on the determination of the collision and an interruption time to transmit the SRS in the uplink portion of the first CC.
Abstract:
Coverage enhancement of an eMTC system may be limited if an MTC device switches from transmission mode to reception mode using subframes that may be utilized for transmissions or receptions. The present disclosure provides, among others, a mechanism by which a device may determine a set of valid subframes for use in communicating via a backhaul link, an access link, and/or a direct link. In addition, the present disclosure provides a mechanism by which a device may switch between different communication link operations using subframes that are unavailable for transmitting and/or receiving data. The apparatus may receive repetition configuration information from a base station in communication with the relay node. In addition, the apparatus may determine a backhaul repetition configuration for a backhaul link and an access link repetition configuration for an access link at the relay node based at least on the repetition configuration received from the base station.
Abstract:
Aspects of the present disclosure provide techniques and apparatus for power savings for control channel monitoring for enhanced machine type communications (eMTC). In one aspect, a method is provided which may be performed by a wireless device such as a low cost wireless device, which may be user equipment (UE) or an eMTC UE. The method generally includes determining whether a downlink channel is present in a subframe; and causing the UE to enter a low power mode for a duration based on a determination that the downlink channel is not present in the subframe.
Abstract:
Aspects of the present disclosure generally relate to a conditional utilization of reference signals for managing communications of one or more user equipment (UE) in a wireless communications system. The described aspects include receiving a transmission having a first subframe slot and a second subframe slot, at least one of the first subframe slot and the second subframe slot have a single-slot transmission time interval (TTI). The described aspects further include detecting a first demodulation reference signal (DM-RS) in the first subframe slot and a second DM-RS in the second subframe slot. The described aspects further include determining whether to demodulate the at least one downlink channel in the first subframe slot using the first DM-RS in the first subframe slot or to demodulate both the first DM-RS in the first subframe slot and the second DM-RS in the second subframe slot based on whether at least one condition exists.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for pilot design for Narrow-Band Internet of Things (NB-IoT). In certain aspects, the method generally includes determining at least one binary code sequence to use as a demodulation reference signal (DMRS) for a channel transmitted across one or more subframes using one or more tones within a resource block (RB) allocated to the UE for narrowband communication, and transmitting the channel including the DMRS using the one or more tones and the determined binary code sequence. In certain aspects, the binary code sequence may be determined based on a binary random sequence, such as pseudo noise (PN) or Gold sequence.
Abstract:
Aspects of the present disclosure provide techniques for physical broadcast channel (PBCH) and master information block (MIB) design. An example method is provided for operations which may be performed by a user equipment (UE). The example method generally comprises receiving, a first number of symbols within a first subframe on a physical channel, performing a first blind decode on the first number of symbols to obtain a first set of bits, performing one or more cyclic shifts on the first set of bits, calculating a redundancy check value for the first set of bits, and decoding an information block based on the whether the redundancy check value passes. Aspects of the present disclosure provide techniques for transmission configurations. An example method is provided for operations which may be performed by a base station (BS). The example method generally comprises selecting a transmission configuration, from a set of predetermined transmission configurations, based on a deployment configuration, generating a signal having an indication of the deployment configuration, and transmitting the signal.
Abstract:
Various aspects described herein relate to scheduling resources in wireless communications. In one aspect, communications can be established with a plurality of user equipment (UE). A set of the plurality of UEs as having an interference impact on one another that is less than a threshold can be determined. A first UE of the set of the plurality of UEs can be scheduled for downlink communications in a first transmission time interval (TTI), and a second UE of the set of the plurality of UEs can be scheduled for uplink communications in a second TTI that is adjacent in time to the first TTI. In another aspect, uplink communications for the first UE can be scheduled in a portion of the guard period TTI based at least in part on determining a timing advance of the first UE is less than a threshold.
Abstract:
A method of wireless communication includes generating a position reference signal (PRS) for a transmitter having a same physical cell identity (PCI) as a macro eNodeB. The PRS is based on a virtual cell ID and/or cell global identification (CGI) of the transmitter such that the PRS is different from a PRS of the macro eNodeB. The method also includes transmitting the PRS.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communications and, more particularly, to techniques for single-frequency network (SFN) operation for machine-type communications (MTC) coverage enhancements. A method is provided for wireless communications by a user equipment (UE). The method generally includes detecting a synchronization signal transmitted from at least one of a plurality of transmission points, wherein each of the plurality of transmission points transmits a synchronization signal at a different offset time relative to a subframe boundary in a synchronized network, determining a subframe occurring a fixed time after detecting the synchronization signal to monitor for system information transmitted from at least one of the plurality of transmission points, and monitoring for a system information block during the determined subframe.