Abstract:
An angularly resolved scatterometer uses a broadband radiation source and an acousto-optical tunable filter to select one or more narrowband components from the broadband beam emitted by the source for use in measurements. A feedback loop can be used to control the intensity of the selected narrowband components to reduce noise.
Abstract:
An encoder spectrograph is used to analyze radiation from one or more samples in various configurations. The radiation is analyzed by spatially modulating the radiation after it has been dispersed by wavelength or imaged along a line. Dual encoder spectrographs may be used to encode radiation using a single modulator. An encoded photometric infrared spectroscopy (“EPIR”) analyzer employs orthogonal encoded components having substantially identical modulation frequencies, which may allow for the multiplexing of up to twice as many encoded components.
Abstract:
An encoder spectrograph is used to analyze radiation from one or more samples in various configurations. The radiation is analyzed by spatially modulating the radiation after it has been dispersed by wavelength or imaged along a line. Dual encoder spectrographs may be used to encode radiation using a single modulator. An encoder spectrograph includes a modulator with radiation filters having non-equal widths and centered at non-equal intervals along the encoding axis of the modulator.
Abstract:
Noxious emissions present in the exhaust gases of an internal-combustion engine of a motor vehicle are controlled by making use of an IR spectrophotometer provided on board the motor vehicle, for the purpose of obtaining an analysis of all the main components of the exhaust gases of the engine. The IR spectrophotometer is of the type with electrostatic micro-shutters so as to present overall dimensions designed to enable its use on board the motor vehicle.
Abstract:
Encoded spatio-spectral information processing is performed using a system having a radiation source, wavelength dispersion device and two-dimensional switching array, such as digital micro-mirror array (DMA). In one aspect, spectral components from a sample are dispersed in space and modulated separately by the switching array, each element of which may operate according to a predetermined encoding pattern. The encoded spectral components can then be detected and analyzed. In a different aspect, the switching array can be used to provide a controllable radiation source for illuminating a sample with radiation patterns that have predetermined characteristics and separately encoded components. Various applications are disclosed.
Abstract:
An arrangement for spatially resolved acquisition of an object which is illuminated by an illumination arrangement, wherein a relative movement is generated between the illumination arrangement and the object by moving the object and/or the illumination arrangement and, in addition to at least one confocally arranged detection element for confocal acquisition of the light coming from points on the object, there is provided at least one additional detection element for the acquisition of object light at least posterior in time to the confocal acquisition. For at least two-dimensionally spatially resolved measurement of time processes, especially of fluorescence decay times, preferably at the ocular fundus, using a scanning laser ophthalmoscope, the radiation receiver is at least a series of detectors which are arranged in such a way that there is a series of additional detector elements in addition to the confocal detector element at least subsequently in the scanning direction.
Abstract:
An optical spectrum measuring apparatus is disclosed which is able to accurately measure the optical spectrum without an influence and to measure the light intensity per unit frequency without an influence of the change of the bandwidth of the wavelength because of the measured wavelength. The diffraction grating 4 emits the diffracted light with an appropriate wavelength corresponding to the incident angle after diffracting the parallel light. The outgoing light slit 6 passes the diffracted light with a length shorter than the slit width. The AD converter 9 measures the intensity of the diffracted light passed through the outgoing light slit 6. CPU 12 controls the incident angle and the width of the slit. The memory of the bandwidth of the wavelength 14 stores the bandwidth of the passed wavelength and the measured light intensity is adjusted with the bandwidth of the passed wavelength. Also the bandwidth of the passed wavelength is converted to the frequency and the measured light intensity is adjusted by the bandwidth of passed wave frequency.
Abstract:
A grating drive apparatus for use in a multiple-grating spectrometer is provided. The spectrometer has an entrance slit, an exit port, an optical path between the entrance slit and the exit port, and a plurality of diffraction gratings. Each of the gratings is rotatable about a respective preferred axis for selecting a wavelength during spectrometer operation. The grating drive apparatus includes a turret having a plurality of gratings mounted on it, a mechanical stop assembly, and a drive assembly. The drive assembly causes the turret to engage the stop assembly to rotate the turret and select a grating. The drive assembly also rotates the selected grating to select an operational wavelength.
Abstract:
A double-pass scanning monochromator for use in an optical spectrum analyzer includes an input optical fiber for emitting an input light beam, a diffraction grating for diffracting the input light beam to produce a spatially dispersed light beam, a slit for passing a selected portion of the dispersed light beam, a motor for rotating the diffraction grating, a shaft angle encoder for sensing grating position, and an output optical fiber. The light that passes through the slit is directed to the diffraction grating and is recombined by the diffraction grating to produce an output light beam. The light beam to be analyzed is incident on the diffraction grating during first and second passes. A polarization rotation device rotates the polarization components of the light beam by 90.degree. between the first and second passes so that the output of the monochromator is independent of the polarization of the input light beam. The output optical fiber is translated by a micropositioning assembly in a plane perpendicular to the output light beam during rotation of the diffraction grating to automatically track the output light beam and to provide optical chopping.
Abstract:
An analyzer measures properties of multiple chemical samples, and includes an optical filter element having a long axis and positioned at a location where simultaneous multiple light beams, corresponding to the chemical samples to be measured, form a diffuse light spot elongated along an axis which is substantially aligned with the filter element long axis. The analyzer also includes a light source, filter means incorporating the filter element for transmitting spectrally selected portions of the light beams, sample cell means for exposing each sample to its associated light beam, and detector means for detecting the light beams after modification by the samples and after transmission by the filter. In a preferred embodiment, optical fibers carry the light beams to and from the chemical samples.