Abstract:
An arrangement for spatially resolved acquisition of an object which is illuminated by an illumination arrangement, wherein a relative movement is generated between the illumination arrangement and the object by moving the object and/or the illumination arrangement and, in addition to at least one confocally arranged detection element for confocal acquisition of the light coming from points on the object, there is provided at least one additional detection element for the acquisition of object light at least posterior in time to the confocal acquisition. For at least two-dimensionally spatially resolved measurement of time processes, especially of fluorescence decay times, preferably at the ocular fundus, using a scanning laser ophthalmoscope, the radiation receiver is at least a series of detectors which are arranged in such a way that there is a series of additional detector elements in addition to the confocal detector element at least subsequently in the scanning direction.
Abstract:
An integral apparatus for testing twilight vision and glare sensitivity and a method for operating the apparatus. The abstract of the disclosure is submitted herewith as required by 37 C.F.R. §1.72(b). As stated in 37 C.F.R. §1.72(b): A brief abstract of the technical disclosure in the specification must commence on a separate sheet, preferably following the claims, under the heading “Abstract of the Disclosure.” The purpose of the abstract is to enable the Patent and Trademark Office and the public generally to determine quickly from a cursory inspection the nature and gist of the technical disclosure. The abstract shall not be used for interpreting the scope of the claims. Therefore, any statements made relating to the abstract are not intended to limit the claims in any manner and should not be interpreted as limiting the claims in any manner.
Abstract:
The present invention is directed to an arrangement for generating a variable illumination and irradiation for diagnosis and therapy, particularly for the human eye (1), and to a method for the application thereof. The object to be illuminated can be an artificial object or biological tissue. The arrangement for carrying out the illumination/irradiation of a human eye (1) comprises an illumination unit (2, 3), an optical imaging system (4), an evaluating unit, a central control unit (6) and an output unit (7). The illumination unit (2, 3) generates an illumination which is variable with respect to time and/or space and which is adapted to the diagnostic results. The solution according to the invention is provided chiefly for post-operative fine adjustment of the refractive power of photosensitive plastics already implanted in the eye (1). The latter can be optical lenses as well as other optical elements which are placed in a specific manner in the cornea. However, application of the invention for achieving dermatological effects is also conceivable.
Abstract:
The present invention is directed to an arrangement for generating a variable illumination and irradiation for diagnosis and therapy, particularly for the human eye (1), and to a method for the application thereof. The object to be illuminated can be an artificial object or biological tissue. The arrangement for carrying out the illumination/irradiation of a human eye (1) comprises an illumination unit (2, 3), an optical imaging system (4), an evaluating unit, a central control unit (6) and an output unit (7). The illumination unit (2, 3) generates an illumination which is variable with respect to time and/or space and which is adapted to the diagnostic results. The solution according to the invention is provided chiefly for post-operative fine adjustment of the refractive power of photosensitive plastics already implanted in the eye (1). The latter can be optical lenses as well as other optical elements which are placed in a specific manner in the cornea. However, application of the invention for achieving dermatological effects is also conceivable.
Abstract:
An integral apparatus for testing twilight vision and glare sensitivity and a method for operating the apparatus. The abstract of the disclosure is submitted herewith as required by 37 C.F.R. §1.72(b). As stated in 37 C.F.R. §1.72(b): A brief abstract of the technical disclosure in the specification must commence on a separate sheet, preferably following the claims, under the heading “Abstract of the Disclosure.” The purpose of the abstract is to enable the Patent and Trademark Office and the public generally to determine quickly from a cursory inspection the nature and gist of the technical disclosure. The abstract shall not be used for interpreting the scope of the claims. Therefore, any statements made relating to the abstract are not intended to limit the claims in any manner and should not be interpreted as limiting the claims in any manner.
Abstract:
An arrangement and method for determining the two-dimensional distribution of fundus pigments, particularly of the xanthophyll macular pigment. The arrangement for carrying out the method comprises an illumination unit which illuminates the retina via an illumination beam path directed to the ocular fundus, observation optics located in the observation beam path proceeding from the ocular fundus, an image processing unit, elements for beam deflection and a central controlling and evaluating unit. In the method, a two-dimensional reflection image of the retina is recorded in a selected narrow-band wavelength region. In evaluating this two-dimensional reflection image, site-specific areas are established for determining the optical density and comparison values. The optical density of the fundus pigment at every fundus location is calculated from the negative logarithmic value of the quotient of the intensity value of the reflection image IR(λ) at this fundus site to a comparison intensity value of the reflection image IR(λ)Comparison. The suggested solution for the objective detection of the two-dimensional distribution of the optical density of the macular pigment xanthophyll is also suitable in principle for determining the distribution of other fundus pigments.
Abstract:
An interferometer arrangement has an adjustable optical path length difference in at least one interferometer arm and a photoelectric receiver for detecting the interference signals generated by the interferometer. An incremental grating transmitter is coupled to the arrangement with a device for changing the optical path length difference and for generating a reference signal which changes its frequency like that of the interference signal depending on the rate of change of the optical path difference.
Abstract:
An arrangement for measuring intraocular distances between different optical boundary surfaces of the human eye by at least one interferometric measurement system is provided. The arrangement further comprises at least one diffractive optical element (DOE) for dividing the illumination beam path into partial beam paths for different boundary surfaces and/or for combination and mutual adaptation of the wavefronts of measurement light components proceeding from different boundary surfaces and/or for adaptation of the wavefronts of measurement light components proceeding from different boundary surfaces of the eye to the wavefront of the measurement light of at least one interferometric reference arm.