Abstract:
A control system includes a heater control module and a particulate matter (PM) load module. The heater control module selectively activates an electric heater to initiate regeneration in a zone of a particulate filter and deactivates the electric heater after the regeneration is initiated. The regeneration continues along a length of the particulate filter after the electric heater is deactivated. The PM load module determines a PM load based on an outlet temperature of the particulate filter after the regeneration is initiated.
Abstract:
A turbocharger mixing manifold for an exhaust aftertreatment system for a two-stroke locomotive diesel engine providing for a transition of a non-uniform exhaust gas flow field exiting a turbocharger into a regulated, uniform exhaust gas stream with minimal aerodynamic losses and an even distribution (mixing) of hydrocarbons in liquid, gas or burning states in order to ensure optimal performance of the attached exhaust aftertreatment system.
Abstract:
A method is applied to regenerate particulate matter in a particulate filter of a hybrid electric vehicle having a combination of a combustion engine and an electric motor for propelling the vehicle, the hybrid electric vehicle having an electrically heated catalyst disposed in flow communication with the particulate filter in an exhaust system of the vehicle. The method determines whether the combustion engine is or is not combusting fuel, and under a condition where the combustion engine is not combusting fuel, the catalyst is electrically heated until it has reached a temperature suitable to cause ignition of the particulate matter. The electric motor is used to facilitate rotation of the combustion engine at a rotational speed suitable to draw air into and be exhausted out of the combustion engine into the exhaust system, across the catalyst, and into the particulate filter to facilitate ignition of the particulate in the filter.
Abstract:
A particulate filter assembly, an exhaust gas treatment system having a particulate filter assembly, and a control method for flow controlled zoned regeneration of the particulate filter assembly are provided. The particulate filter assembly is configured to receive an exhaust gas stream from an internal combustion engine and includes an inlet end configured to receive the exhaust gas stream, a filter configured to remove particulates from the exhaust gas stream, a heating device positioned upstream from the filter having a plurality of zones, each zone of the plurality of zones independently operable to heat a corresponding region of the filter and an exhaust flow valve positioned downstream from the filter configured to selectively restrict flow of the exhaust gas stream through the filter.
Abstract:
In one exemplary embodiment of the invention, an internal combustion engine includes a fuel system in fluid communication with a cylinder to direct a fuel flow to be mixed with air in the cylinder and an exhaust system in fluid communication with the cylinder to receive an exhaust gas produced by the combustion process, wherein the exhaust system includes an oxidation catalyst, a particulate filter downstream of the oxidation catalyst. The system also includes a control module that determines an amount of energy to be provided by at least one of: a post-injection process, hydrocarbon injector, and heating device, wherein the amount of energy is based on a desired temperature at a selected location in the exhaust system, an exhaust gas flow rate, a temperature of the received exhaust gas, a flow rate and temperature of the exhaust gas at the inlet of the oxidation catalyst.
Abstract:
A control system comprises an exhaust treatment system, an electric heating module, and an exhaust heating module. The exhaust treatment system comprises a particulate matter (PM) filter and an electric heater. The PM filter includes M zones that receive exhaust gas of an engine and filter PM from the exhaust gas. The electric heater heats exhaust gas input to N of the M zones, wherein M is an integer greater than one and N is an integer less than M. The electric heating module activates the electric heater to heat exhaust gas input to the N zones to regenerate the N zones. The exhaust heating module heats exhaust gas input to the M zones by controlling an air-fuel ratio of the exhaust gas after the N zones regenerate.
Abstract:
A system includes a particulate matter (PM) filter with multiple zones, an electric heater and a control module. The electrical heater includes heater segments, which each correspond with a respective one of the zones. The electrical heater is arranged upstream from and is proximate with the PM filter. The control module selectively applies a first energy level to a first one of the zones via a first one of the heater segments to initiate regeneration in the first zone. The control module also selectively applies a second energy level that is less than the first energy level to a second one of the zones via a second one of the heater segments to initiate regeneration in the second zone.
Abstract:
A control system comprises a particulate matter (PM) filter, an electric heater, a first heating module, and a second heating module. The PM filter includes M zones that filter PM from exhaust gas. The electric heater includes M segments corresponding to the M zones that heat exhaust gas input to selected ones of the M zones when activated. The first heating module activates N of the M segments to heat exhaust gas input to N of the M zones to regenerate the N zones. The second heating module operates in one of a first mode and a second mode to regenerate other ones of the M zones after the N zones are regenerated. The first mode includes adjusting an air-fuel ratio of the exhaust gas. The second mode includes activating other ones of the M segments to heat exhaust gas input to other ones of the M zones.
Abstract:
A diesel particulate filter assembly includes a diesel particulate filter (DPF) and an electric heater that is integrally formed at an upstream end of the DPF. The electric heater includes a heating substrate and a resistive heating element. The heating substrate includes a central region and a boundary region around the central region. The resistive heating element includes a plurality of conductive portions. Adjacent ones of the conductive portions in the central region form a first spacing. Adjacent ones of the conductive portions in the boundary region form a second spacing. The second spacing is smaller than the first spacing.
Abstract:
A method for controlling regeneration of a particle filter by electrically heating the particle filter. According to the method, the regeneration is triggered by a calculator according to a loading level and temperature of the particle filter. The calculator simultaneously uses parameters relating to the operation of the vehicle so as to take into account the fuel consumption driven by the electrical heating of the filter.