Abstract:
An improvement in an oil filter is provided, the oil filter being of the type which comprise a housing opened at one end thereof, a cylindrical first separator unit disposed in the housing for removing solid contaminants from the oil introduced into the housing, and a second separator unit disposed within the first separator unit for removing gaseous contaminants from the oil that has passed through the first separator unit, the second separator unit including a funnel-shaped cyclone defining a chamber arranged to generate a vortical flow of the oil introduced therein to thereby separate gas-rich oil and a removal pipe extending into the chamber along an axial center thereof for discharging the gas-rich oil. The improvement comprises a wall of the cyclone defining the chamber having a lower portion and an upper portion, and a plurality of pores formed in the lower portion for allowing the oil to flow out of the cyclone. The removal pipe includes an upper end portion positioned above the lower portion of the wall of cyclone, the upper end portion being formed with a plurality of orifices for permitting the gas-rich oil to flow into the removal pipe. The pores and the orifices are arranged in such a manner that they do not overlap with each other in the axial direction of the chamber. The improved oil filter ensures a sufficient and smooth separation of the gaseous contaminants from the oil.
Abstract:
The invention relates to a device for aeration and ventilation of a fuel system of a motor vehicle, with a pipe union for connecting the device to the fuel system, the pipe union being connected via a connecting element to a three-way valve via which the pipe union can be fluid-connected alternately to an air inlet opening or an air outlet opening of the device. Furthermore, there is a filter element which is located in the flow path between the air inlet opening and the three-way valve. The filter element, the three-way valve, and the connecting element are accommodated in a common housing. An especially compact and space-saving device is devised by the integration of the three-way valve, connecting element, and filter element into one unit.
Abstract:
A filter element is provided with a snorkel that facilitates bleeding of air along the outside periphery of a tubular filter media pack to a bleed chamber contained within the filter element. This may be employed in fuel filtration applications during installation and removal of filter elements whereby air can be temporarily trapped in a housing containing the filter element. The snorkel thus vents the air along the outside of the filter element and then into a bleed chamber where it can be communicated to a standpipe having an isolated bleed passage.
Abstract:
Liquid tank comprising: a first or storage volume for storing the liquid, bounded at least in part by a wall; a second or venting volume for venting the tank, bounded at least in part by the same wall; means of communication between the storage and venting volumes, situated in the top of these volumes; at least one orifice situated in the top of the venting volume, normally placing the venting volume in communication with a venting circuit; and means capable of closing off the means of communication, when the liquid in the venting volume reaches a predetermined level.
Abstract:
A fuel filter of an internal combustion engine including a filter housing having a lowermost housing base and a topmost removable housing lid. The filter housing has one raw fuel inlet and one pure fuel outlet. A replaceable annular filter insert mounts there in the filter housing, fuel flowing through it from outside towards inside. The filter subdivides an interior space of the filter housing into a raw zone and a pure zone. A supporting body is arranged in the interior of the annular filter insert, a first flow channel and a second flow channel extending therethrough. The first flow channel connects at one end to the pure zone and at the other end to the pure fuel outlet. The second flow channel connects at one end to the raw zone via a vent throttle or a vent valve and at the other end to a reservoir return in the filter housing. The raw fuel inlet is in the housing base and a flow channel leads from the raw fuel inlet to a portion of the raw zone of the interior space of the filter housing which is, during operation, topmost.
Abstract:
A liquid filter assembly is provided. The preferred assembly includes a serviceable filter cartridge having a primary filter section and a secondary or bypass filter section. The preferred assembly includes a bypass valve arrangement and a suction filter arrangement. The suction filter arrangement preferably includes a dimensionally biased valve arrangement, preferably one which is devoid of a helical coiled spring, to control flow through the suction filter. A flow/pressure regulation valve, to allow flow from an interior of the assembly to a reservoir if needed, is preferably provided. Preferred serviceable filter cartridges are shown.
Abstract:
A water softener including a water softener tank having an inlet and an outlet. A cation exchange media is positioned within the tank through which water, passing from the inlet to the outlet, is flowed. A valve pedestal is connected to the top of the tank. The valve pedestal includes a dome hole adapter that is screwed into the top of the water softener tank and establishes fluid communication between the inside of the tank and the atmosphere. A downcomer is connected to the dome hole adapter so as to establish an air/water contact within the tank. A variable coupling is connected to the dome hole adapter and extends upwardly therefrom. A pressure release valve is connected to the variable coupling.
Abstract:
A method of cleaning an screen in a manufacturing process step that employs a chamber including a drain line having a screen configured and disposed in the chamber above the drain line to trap soluble materials includes detecting a build-up of soluble material on the screen, ceasing a work operation in the chamber, and initiating a screen cleaning operation. The screen cleaning operation includes closing a computer operated valve fluidly connected to the drain line to fluidly isolate a portion of the chamber, automatically introducing an amount of solvent into the chamber once the computer operated valve is closed with the amount of solvent filling the chamber and/or the drain line to fully immerse the screen, and opening the operated valve after a predetermined amount of time to empty the chamber and the drain line of solvent once the soluble materials trapped on the screen are dissolved.
Abstract:
An ion-removing apparatus includes a housing, a first ion-removing unit and a second ion-removing unit. The housing includes an inlet port, a liquid discharge port and a gas discharge port. The first ion-removing unit is disposed within the housing, so that the fluid that has entered the housing via the inlet port flows through the first ion-removing unit. The first ion-removing unit serves to remove a first ion, such anions, contained in the fluid. The second ion-removing unit is disposed within the housing, so that the fluid that has flown though the first ion-removing unit flows through the first ion-removing unit. The second ion-removing unit serves to remove a second ion, such as cations contained in the fluid. The liquid contained in the fluid that has flown through the second ion-removing unit is discharged from the liquid discharge port. The gas contained in the fluid that has flown through the second ion-removing unit is discharged from the gas discharge port.
Abstract:
Systems and methods handle air and rinsing fluid during fluid processing. The systems and methods eliminate air from a fluid processing system prior to, during, and after use. The systems and methods provide a connector assembly for establishing fluid flow from a fluid source. The connector assembly has discrete first and second passages that prevent communication between the fluid in first passage and the fluid in the second passage. Prior to system use, the connector assembly may be utilized in a priming function to remove residual air from a fluid circuit prior to use. The connector assembly may also be utilized after use to perform a rinse-back function.