Abstract:
A two-wire full duplex frequency division multiplex (FDM) modem system having a unit for cancelling a transmission signal, taking into consideration the line distortion characteristics. The FDM modem system includes two modem units connected through the two-wire full duplex transmission line.Each modem unit includes a unit for modulating a transmission data, a unit for synthesizing the modulated transmission signal and a reception signal, a unit for adding the signal from the synthesizing unit and a signal, a unit for demodulating the reception signal, and a unit for generating the signal supplied to the adding unit cancelling a transmission echo signal included in the signal from the synthesizing unit, from the signal modulated at the modulating unit and the signal from the adding unit. The adding unit subtracts the signal generated at the echo cancellation signal generation unit from the signal from the synthesizer unit.The FDM may further include a unit, for receiving the signal from the adder unit, passing a signal having the transmission frequency band, and supplying same to the echo cancellation signal generation unit as a signal for compressing the line characteristics.
Abstract:
In particular, there are provided in accordance with the invention a method and apparatus for adjusting a digital equalizing filter in a hybrid circuit in a telecommunication system for transmitting digital information in duplex on a single line pair with simultaneous adaptive echo elimination and adaptive elimination of noise caused by intersymbol interference, where a first and a second compensation signal (e(t), i(t)), which are respectively dependent on the stored parameters of a digital balance filter and an equalizing filter, are subtracted from a received signal (a(t)+e(t)+i(t)) to form a difference signal (r(t)) which is compensated for noise respectively caused by echoes and intersymbol interference, the balance filter parameters being corrected with the aid of a correction signal (.epsilon.B.sub..kappa.) dependent on the difference signal (r(t)). The equalizing filter parameters are adjusted with the aid of a further correction signal (.epsilon.U.sub..kappa.) formed by the balance filter correction signal (.epsilon.B.sub..kappa.) and the first compensation signal (e(t)) such that the further correction signal (.epsilon.U.sub..kappa.) will substantially agree with the balance filtercorrection signal (.epsilon.B.sub..kappa.), but obtain the value zero when the first compensation signal (e(t)) and the balance filter correction signal (.epsilon.B.sub..kappa.) are both positive simultaneously or negative simultaneously. There is thus prevented the correction sequence of the equalizing filter parameters when the balance filter parameters are changed in a direction such that the absolute value of the estimated echo (e(t)) increases.
Abstract:
An adaptive equalizer and echo canceller jointly respond to a common error difference between the actual output and the quantized digital output of a data receiver in a two-wire digital data transmission system to achieve simultaneous full-bandwith full-duplex operation. Two-wire transmission channels are typically terminated in hybrid balancing networks which because of their fixed impedances permit "echoes" of the transmitted signal to interfere with reception of the much weaker incoming signal. Both the equalizer and canceller are adaptively adjustable transversal structures.
Abstract:
The present application relates to an adaptive filter using manageable resource sharing and a method of operating the adaptive filter. The adaptive filter comprises a cluster controller configured for allocating each of several computational blocks to one of several clusters and a routing controller for configuring the routing of tapped delay signals by a routing logic to the respective cluster in accordance with an allocation of the tapped delay signals to the clusters. Each of computational blocks is configured for adjusting one filter coefficient, ci(n), in one cycle of an iterative procedure according to an adaptive convergence algorithm. The number of computational blocks is less than an order of the adaptive filter.
Abstract:
A receiver (e.g., for a 10G fiber communications link) includes an interleaved ADC coupled to a multi-channel equalizer that can provide different equalization for different ADC channels within the interleaved ADC. That is, the multi-channel equalizer can compensate for channel-dependent impairments. In one approach, the multi-channel equalizer is a feedforward equalizer (FFE) coupled to a Viterbi decoder, for example a sliding block Viterbi decoder (SBVD); and the FFE and/or the channel estimator for the Viterbi decoder are adapted using the LMS algorithm.
Abstract:
A receiver (e.g., for a 10G fiber communications link) includes an interleaved ADC coupled to a multi-channel equalizer that can provide different equalization for different ADC channels within the interleaved ADC. That is, the multi-channel equalizer can compensate for channel-dependent impairments. In one approach, the multi-channel equalizer is a feedforward equalizer (FFE) coupled to a Viterbi decoder, for example a sliding block Viterbi decoder (SBVD); and the FFE and/or the channel estimator for the Viterbi decoder are adapted using the LMS algorithm.
Abstract:
An adaptive filter unit outputs a send-mid signal obtained by eliminating echo from a send-in signal, and a power comparing unit calculates a power ratio between received signal power and send-mid signal power. When a receiver ST detecting unit detects a single talk state at a receiving side, an acoustic coupling amount estimating unit estimates and updates the estimated amount of acoustic coupling from the power ratio. A residual echo power estimating unit estimates estimated residual echo power from the received signal power and the estimated amount of acoustic coupling, and a signal-to-echo ratio estimating unit estimates a ratio between the send-mid signal power and the estimated residual echo power. An amplitude suppression coefficient determining unit determines the amplitude suppression coefficient corresponding to the ratio, and an amplitude suppression unit amplitude suppresses the send-mid signal.
Abstract:
Networked modems configurable to establish a communication system on a wired communication medium. Each modem includes: a network module, transmit and receive path modules and a frequency domain echo canceller. The network module is configured to communicate with network modules of remaining ones of the at least three modems to allocate bandwidth of the shared communications medium for at least two discrete point-to-point communication links between corresponding pairs of the at least three modems. The transmit and receive path modules are configured for multi-tone modulation and demodulation of communications on the wired communication medium and are responsive to the bandwidth allocation of the network module to concurrently process at least a first discrete point-to-point communication link with a first modem among remaining ones of the at least three modems and at least a second discrete point-to-point communication link with a second among remaining ones of the at least three modems. The frequency domain echo canceller is configured to substantially cancel leakage of the communications transmitted on the transmit path into the receive path and to enable each point-to-point communication link to support full duplex communications.
Abstract:
A system and method for provide a stable gain from an adaptive gain control device in a signal path. An echo canceller is also located in the signal path, and is used to provide performance information regarding losses in the signal. This performance information is fed to the automatic gain control device via a connection. The automatic gain control device thereafter uses the performance information to determine a maximum gain that might be provided based upon losses cause by echo conditions. The gain however is limited in order to provide for a stable system. The performance information includes a loss rate that includes a combination of the echo return loss and the echo return loss enhancement.
Abstract:
The spirit of the present invention is to vary the step size parameter in accordance with the error signal and the output acoustic signal, wherein the filter is easy to implement, nonparametric VSS-NLMS algorithm which employs the mean-square error and the estimated system noise power to control the step-size update. The new nonparametric VSS-NLMS algorithm has been shown to perform with fast convergence rate, good tracking, and low mis-adjustment. In comparison with existing VSS-NLMS algorithms, the proposed algorithm has demonstrated consistently superior performance both in convergence and for final error level relative to published algorithms in application on both simulated data and real speech data.