Abstract:
The present invention provides a technique for improving the resolution of an A/D converter. The input analog signal is sampled to generate an analog level and the analog level is held for an interval. A random noise signal having zero average value is superimposed on the held level to generate a fluctuating voltage. This fluctuating voltage is then sampled a plurality of at least N times, and N sampled values are communicated to the A/D converter so that N digitized values are generated. These digitized values are averaged to provide an output having a digitization error reduced by a factor of N.sup.1/2.
Abstract:
A system for increasing the accuracy and resolution of an ADC comprising a digital filter connected to the output of the ADC, a system clock for providing a digital filter clock signal, a low/pass filter/amplifier for generating a large-scale, rapidly varying dither signal fdrom the digital filter clock signal, and a summing circuit for adding the dither signal to a test signal connected to the input of the ADC.
Abstract:
Digital representations of analog signals are limited in resolution accuracy by the number of bits in the digital output signal of an analog-to-digital converter which limits the number of analog output levels produceable by a digital-to-analog converter. The apparent resolution accuracy can be improved, however, by the addition of two "dithering" signals, one at a lower frequency and one at a higher frequency, to increase the number of transitions of the least significant bit (LSB) of the digital signals. In a television receiver employing digital signal processing apparatus, dither signals having magnitudes equivalent to 1/2 and 1/4 LSB and at frequencies related to the TV line frequency and the color subcarrier frequency are preferred.
Abstract:
An analog-to-digital converting circuit comprises an input, a clock signal circuit providing first and second clock signals having the same frequency but having a half-cycle phase difference therebetween; first and second analog-to-digital converting stages each having an input coupled to the converting circuit input for receiving an input analog signal, a control terminal for receiving a respective one of the first and second control clock signals, and an output providing an N-bit binary-coded digital signal representing the level of the input analog signal, each having a voltage quantizing interval of .DELTA.V; an output terminal; and a multiplexing circuit, such as a parallel-to-serial converter, for alternately applying to the output terminal the binary coded digital signals of the first and the second analog-to-digital converting stages. In order to achieve greater accuracy, an offset circuit is included to provide to one of the first and the second analog-to-digital converting stages an offset voltage, relative to the other of such stages, of 1/2 .DELTA.V.
Abstract:
CT ADCs based on continuous-time residue generation systems require accurate estimation of analog transfer functions. This is done by using a pseudo random bit sequence, injected using a DAC, that traverses the transfer function to be measured. Mismatch in the injection DAC introduces errors in the transfer function estimation and results in poor NSD at the ADC output. Techniques are described to improve the accuracy of the transfer function estimate despite DAC mismatch and despite the presence of an input signal.
Abstract:
A system includes a dither generator module that includes a most significant bits (MSB) dither generator device that generates a first random value. The dither generator module also includes a least significant bits (LSB) dither generator device that generates a second random value. The system further includes a first digital to analog converter (DAC) that receives a sum of the first random value and the second random value and generates a dither signal based on the sum of the first random value and the second random value. The system also includes an analog to digital converter (ADC) that receives a sum of the dither signal and a sampled input signal and generates a first digitized signal. The system includes a subtraction module that subtracts the sum of the first random value and the second random value from the first digitized signal to produce a digitized output signal.
Abstract:
An apparatus includes a plurality of binary weighted capacitors coupled between a first input terminal of a comparator and a plurality of signal buses, wherein the plurality of binary weighted capacitors has a binary weight increasing by two times from a first capacitor to an (N−K)th capacitor, and a constant binary weight from the (N−K)th capacitor to a (N−K−2+2(K+1))th capacitor, an offset voltage generator configured to generate a digitally controlled offset voltage having 2(K+1) steps fed into a second input terminal of the comparator, and a successive approximation logic block configured to receive an output signal of the comparator, and generate an N-bit control signal for controlling the plurality of binary weighted capacitors.
Abstract:
Methods and devices for digitizing an analog repetitive signal using waveform averaging are described. An example method includes generating a time-varying dither signal, receiving the analog repetitive signal comprising multiple instances of a waveform, wherein each waveform has a waveform duration, wherein an average of the time-varying dither signal over multiple waveform durations is substantially zero, and wherein the time-varying dither signal varies over each waveform duration, generating a timing alignment, combining each waveform with the corresponding portion of the time-varying dither signal over each waveform duration to produce an analog output signal, converting the analog output signal to a digital output signal, and producing, based on the timing alignment, a digital averaged signal based on averaging the multiple instances of the waveform in the analog output signal, wherein the timing alignment is used to align the multiple instances of the waveform in the analog output signal.
Abstract:
A device for digitizing an analogue signal, wherein a distortion signal outlet of a distortion signal generator is only coupled to an analogue digital converter by passive components.
Abstract:
A dither circuit for high-resolution analog-to-digital converters (ADCs) is presented, including a settable pseudorandom sequence generator, a trimming module, a trimmable digital-to-analog conversion circuit, a dither introduced circuit and a dither elimination circuit, wherein the settable pseudorandom sequence generator works to generate pseudorandom sequence signal uncorrelated to analog input signal and its output can be set, of which n bit output is taken as digital dither signal and n can be less than the quantization bit of the ADC; the trimming module works to determine the trimming signals for the trimmable digital-to-analog conversion circuit to convert the digital dither signal into analog dither signal precisely; the dither introduced circuit works to introduce the analog dither signal to the ADC; the dither elimination circuit works to remove the digital dither signal from the output of ADC. The dither circuit features less complexity and better dynamic performance for high-resolution ADC.