Abstract:
A method for measuring the differential emissivity between two sites on the surface of a body and the temperature of the two sites. The method includes a plurality of measurements of the infrared radiation arising from each of the two sites under a number of different conditions. Some of the measurements include irradiation by external infrared radiation at a known wavelength and intensity. The infrared radiation arising from each of the sites may include emitted radiation, reflected ambient radiation, and reflected external radiation. Additionally, the temperature determined using the method described can be used to calibrate infrared imaging devices used to inspect the entire body.
Abstract:
The combination in an instrument of a multimeter and an instrument having apparatus for determining a non-contact measurement of radiation perceived at a distance from a surface. The instrument may further have an apparatus for determining temperature of that surface by direct contact therewith. The non-contact apparatus may have optical sighting means and laser sighting means, and means for determining emissivity of the surface. Provision may be made for recording data, e.g. a data logger. Audio output may be provided in accordance with temperature determinations, and may include speech synthesizing. Conveniently, the instrument is adapted for holding in the hand, for example by a pistol-grip handle, and/or for mounting on a tripod as well as a threaded connection with a wrist strap or a tripod. Temperatures derived respectively from infrared radiation, and from direct contact, have separate displays. The multimeter and the temperature instrument may have means for their control by vocal command.
Abstract:
Radiated light with a specified wavelength from a material is detected and a first parameter corresponding to the emissivity ratio is obtained from the plurality of detection signals. Since the emissivity takes on different values according to the condition of the surface of the material, the first parameter changes depending on the surface condition of the material. There is a correlation between a physical value indicating a condition of the material surface and the first parameter. The correlation remains equivalent even if a second parameter corresponding to the physical value is used instead of the physical value itself (for example, an optical physical value such as reflectivity and absorptivity, the thickness of a film formed on the material surface, the surface roughness, and the degree of galvannealing). As an example of the parameter corresponding to the physical value, there is the logarithmic ratio between emissivities (ln .epsilon..sub.a /ln .epsilon..sub.b) corresponding to the temperature in the vicinity of the surface. Therefore, a second parameter can be obtained on the basis of the correlation and a physical value can be obtained. When the emissivity or logarithmic emissivity ratio is used as the second parameter, the temperature in the vicinity of the material surface can be obtained from the second parameter and the plurality of detection signals.
Abstract:
In a process for heating, e.g., a semiconductor wafer within a processing chamber, the wafer is exposed to a flux of electromagnetic radiation from lamps energized by alternating electric current. The surface temperature of the wafer is measured, and responsively, the radiation flux is controlled. The temperature measurement procedure includes collecting radiation propagating away from the wafer in a first light-pipe probe, collecting radiation propagating toward the wafer in a second light-pipe probe and detecting radiation collected in the respective probes. This procedure further involves determining, in the signal received from each probe, a magnitude of a time-varying component resulting from time-variations of the energizing current, and combining at least these magnitude according to a mathematical expression from which the temperature can be inferred. At least some of the radiation collected by the second probe is collected after reflection from a diffusely reflecting surface. The second probe effectively samples this radiation from an area of the diffusely reflecting surface that subtends a solid angle .OMEGA..sub.2 at the wafer surface. The first probe effectively samples radiation from an area of the wafer that subtends a solid angle .OMEGA..sub.1 at the first probe. The radiation sampling is carried out such that .OMEGA..sub.2 is at least about .OMEGA..sub.1.
Abstract:
The present invention comprises a method and apparatus for determining actual temperature, reflectivity and fluorescence of a surface and comprises in the preferred embodiment a two-dimensional focal plane array of rapidly tunable infrared detectors, 11, adapted to detect the emitted infrared flux from a surface of interest, 10, across pre-selected spectral segments in the 4-15 .mu.m range. The invention further comprises a computer having deconvolution algorithms, 13, for isolating the effects of reflectivity, fluorescence and environmental factors affecting infrared emission for each pixel of the generated image at various spectral segments in the 4-15 .mu.m range. The device further includes means for generating images of temperature, emissivity and fluorescence for diagnostic use. The preferred embodiment of the invention also contemplates the use of thermostated black body reference emitters, 12, at the edges of the field of view for enhancing and speeding deconvolution of the detected data across the 4-15 .mu.m spectrum.
Abstract:
A rapid thermal processing system is accurately controlled during a deposition process, in which the emissivity of the substrate material changes as a function of the thickness of the deposited layer, by determining the expected emissivity as a function of time during deposition and applying the expected emissivity to a controller to produce a converted temperature which controls the radiant heat sources of the rapid thermal processing system. In one embodiment, the expected emissivity is used to convert a measured pyrometer temperature into a converted pyrometer temperature. The converted pyrometer temperature is applied to a feedback controller which controls the radiant heaters so that the converted pyrometer temperature equals the desired wafer processing temperature. In another embodiment, the expected emissivity is employed to convert the desired rapid thermal processing temperature into a converted desired rapid thermal processing temperature. The converted desired rapid thermal processing temperature is provided to the controller, which controls the radiant heaters so that the measured pyrometer temperature is equal to the converted desired rapid thermal processing temperature.
Abstract:
Method and apparatus for accurately and instantaneously determining the thermodynamic temperature of remote objects by continuous determination of the emissivity, the reflectivity, and optical constants, as well as the apparent or brightness temperature of the sample with a single instrument. The emissivity measurement is preferably made by a complex polarimeter including a laser that generates polarized light, which is reflected from the sample into a detector system. The detector system includes a beamsplitter, polarization analyzers, and four detectors to measure independently the four Stokes vectors of the reflected radiation. The same detectors, or a separate detector in the same instrument, is used to measure brightness temperature. Thus, the instrument is capable of measuring both the change in polarization upon reflection as well as the degree of depolarization and hence diffuseness. This enables correction for surface roughness of the sample and background radiation, which could otherwise introduce errors in temperature measurement.
Abstract:
A pyrometer according to the present invention calculates a temperature of a target to be measured by means of light emitting device for emitting reference light having three wavelengths to the target, and light measuring portions for measuring the intensity of the reference light, the intensity of light reflected by the target, the intensity of light transmitted through the target and the intensity of light radiated by the target, respectively with respect to each of the three wavelengths. The transmitted light measured value of the reference light transmitted through the target is used for temperature calculation in addition to the measured values of the reference light, the reflected light and the radiated light, and therefore even if the target is a semi-transparent object, the true temperature thereof can be calculated.
Abstract:
Radiation detectors and method measure the emissivity of a remote, heated semiconductor wafer in the presence of ambient radiation. Incident radiation within a selected waveband from a controlled source intermittently radiates the remote wafer, and reflected radiation therefrom is detected in synchronism with the intermittent incident radiation to yield output indications of emissivity of the wafer under varying processing conditions. The temperature of the wafer is monitored by another radiation detector (or detectors) operating substantially within the same selected waveband, and the temperature indications thus derived are corrected in response to the output indications of emissivity to provide indications of the true temperature of the wafer.
Abstract:
An apparatus and a method for detecting the temperature of a substrate, and for controlling the radiation-annealing of the substrate, for example, measures the intensity of infrared light from the substrate when the substrate is irradiated by measuring infrared light and also when the substrate is not irradiated by the infrared light. The temperature is calculated from the transmissivity and emissivity of the substrate, which are calculated from the intensity measurements.