Abstract:
The invention offers a method of producing a semiconductor device that can suppress the worsening of the property due to surface roughening of a wafer by sufficiently suppressing the surface roughening of the wafer in the heat treatment step and a semiconductor device in which the worsening of the property caused by the surface roughening is suppressed. The method of producing a MOSFET as a semiconductor device is provided with a step of preparing a wafer 3 made of silicon carbide and an activation annealing step that performs activation annealing by heating the wafer 3. In the activation annealing step, the wafer 3 is heated in an atmosphere containing a vapor of silicon carbide generated from the SiC piece 61, which is a generating source other than the wafer 3.
Abstract:
MOSFET (30) is provided with SiC film (11). SiC film (11) has a facet on its surface, and the length of one period of the facet is 100 nm or more, and the facet is used as channel (16). Further, a manufacturing method of MOSFET (30) includes: a step of forming SiC film (11); a heat treatment step of heat-treating SiC film (11) in a state where Si is supplied on the surface of SiC film (11); and a step of forming the facet obtained on the surface of SiC film (11) by the heat treatment step into a channel (16). Thereby, it is possible to sufficiently improve the characteristics.
Abstract:
A method of manufacturing an SiC semiconductor device includes the steps of forming a first oxide film on a first surface of an SiC semiconductor, removing the first oxide film, and forming a second oxide film constituting the SiC semiconductor device on a second surface exposed as a result of removal of the first oxide film in the SiC semiconductor. Between the step of removing the first oxide film and the step of forming a second oxide film, the SiC semiconductor is arranged in an atmosphere cut off from an ambient atmosphere.
Abstract:
A method for manufacturing a high-quality semiconductor device having stable characteristics is provided. The method for manufacturing the semiconductor device includes the steps of: preparing a silicon carbide layer having a main surface; forming a trench in the main surface by removing a portion of the silicon carbide layer; and removing a portion of a side wall of the trench by thermal etching.
Abstract:
A silicon carbide semiconductor device having excellent electrical characteristics including channel mobility and a method for manufacturing the same are provided. The method for manufacturing a silicon carbide semiconductor device includes: an epitaxial layer forming step of preparing a semiconductor film of silicon carbide; a gate insulating film forming step of forming an oxide film on a surface of the semiconductor film; a nitrogen annealing step of performing heat treatment on the semiconductor film on which the oxide film is formed, in a nitrogen-containing atmosphere; and a post heat treatment step of performing, after the nitrogen annealing step, post heat treatment on the semiconductor film on which the oxide film is formed, in an atmosphere containing an inert gas. The heat treatment temperature in the post heat treatment step is higher than that in the nitrogen annealing step and lower than a melting point of the oxide film.
Abstract:
A substrate has a surface made of a semiconductor having a hexagonal single-crystal structure of polytype 4H. The surface of the substrate is constructed by alternately providing a first plane having a plane orientation of (0-33-8), and a second plane connected to the first plane and having a plane orientation different from the plane orientation of the first plane. A gate insulating film is provided on the surface of the substrate. A gate electrode is provided on the gate insulating film.
Abstract:
A silicon carbide layer is epitaxially formed on a main surface of a substrate. The silicon carbide layer is provided with a trench having a side wall inclined relative to the main surface. The side wall has an off angle of not less than 50° and not more than 65° relative to a {0001} plane. A gate insulating film is provided on the side wall of the silicon carbide layer. The silicon carbide layer includes: a body region having a first conductivity type and facing a gate electrode with the gate insulating film being interposed therebetween; and a pair of regions separated from each other by the body region and having a second conductivity type. The body region has an impurity density of 5×1016 cm−3 or greater. This allows for an increased degree of freedom in setting a threshold voltage while suppressing decrease of channel mobility.
Abstract:
A MOSFET includes a semiconductor substrate having a trench formed in a main surface, a gate oxide film, a gate electrode, and a source interconnection. A semiconductor substrate includes an n-type drift layer and a p-type body layer. The trench is formed to penetrate the body layer and to reach the drift layer. The trench includes an outer peripheral trench arranged to surround an active region when viewed two-dimensionally. On the main surface opposite to the active region when viewed from the outer peripheral trench, a potential fixing region where the body layer is exposed is formed. The source interconnection is arranged to lie over the active region when viewed two-dimensionally. The potential fixing region is electrically connected to the source interconnection.
Abstract:
An IGBT includes a groove provided in a silicon carbide semiconductor layer, a body region of a first conductivity type provided in the silicon carbide semiconductor layer, and an insulating film covering at least a sidewall surface of the groove, the sidewall surface of the groove being a surface having an off angle of 50° or more and 65° or less with respect to a {0001} plane, the sidewall surface of the groove including a surface of the body region, the insulating film being in contact with at least the surface of the body region at the sidewall surface of the groove, and a first conductivity type impurity concentration in the body region being 5×1016 cm−3 or more.
Abstract translation:IGBT包括设置在碳化硅半导体层中的沟槽,设置在碳化硅半导体层中的第一导电类型的主体区域以及至少覆盖该沟槽的侧壁表面的绝缘膜,槽的侧壁表面为 相对于{0001}面具有偏离角度为50°以上且65°以下的表面,所述凹槽的侧壁表面包括所述主体区域的表面,所述绝缘膜至少与所述表面接触 在所述槽的侧壁面的所述主体区域中,所述体区的第一导电型杂质浓度为5×10 16 cm -3以上。