摘要:
A process for self-aligned manufacturing of integrated electronic devices includes: forming, in a semiconductor wafer having a substrate, insulation structures that delimit active areas and project from the substrate; forming a first conductive layer, which coats the insulation structures and the active areas; and partially removing the first conductive layer. In addition, recesses are formed in the insulation structures before forming said first conductive layer.
摘要:
In a process for the fabrication of integrated resistive elements with protection from silicidation, at least one active area (15) is delimited in a semiconductor wafer (10). At least one resistive region (21) having a pre-determined resistivity is then formed in the active area (15). Prior to forming the resistive region (21), however, a delimitation structure (20) for delimiting the resistive region (21) is obtained on top of the active area (15). Subsequently, protective elements (25) are obtained which extend within the delimitation structure (20) and coat the resistive region (21).
摘要:
A process for fabricating non-volatile memory cells on a semiconductor substrate includes forming a stack structure comprised of a first polysilicon layer isolated from the substrate by an oxide layer. The first polysilicon layer, oxide layer, and semiconductor substrate are cascade etched to define a first portion of a floating gate region of the cell and at least one trench bordering an active area of the memory cell. The at least one trench is filled with an isolation layer. The process further includes depositing a second polysilicon layer onto the whole exposed surface of the semiconductor, and etching the second polysilicon layer to expose the floating gate region formed in the first polysilicon layer, thereby forming extensions adjacent the above portion of the first polysilicon layer.
摘要:
The memory cell is formed in a body of a P-type semiconductor material forming a channel region and housing N-type drain and source regions at two opposite sides of the channel region. A floating gate region extends above the channel region. A P-type charge injection region extends in the body contiguously to the drain region, at least in part between the channel region and the drain region. An N-type base region extends between the drain region, the charge injection region, and the channel region. The charge injection region and the drain region are biased by special contact regions so as to forward bias the PN junction formed by the charge injection region and the base region. The holes thus generated in the charge injection region are directly injected through the base region into the body, where they generate, by impact, electrons that are injected towards the floating gate region.
摘要:
A memory device including a plurality of memory cells, a plurality of insulated first regions of a first type of conductivity formed in a chip of semiconductor material, at least one second region of a second type of conductivity formed in each first region, a junction between each second region and the corresponding first region defining a unidirectional conduction access element for selecting a corresponding memory cell connected to the second region when forward biased, and at least one contact for contacting each first region; a plurality of access elements are formed in each first region, the access elements being grouped into at least one sub-set consisting of a plurality of adjacent access elements without interposition of any contact, and the memory device further includes means for forward biasing the access elements of each sub-set simultaneously.
摘要:
A memory device comprising a semiconductor material substrate with a dopant of a first type, a first semiconductor material well with a dopant of a second type formed in the substrate; a second semiconductor material well with a dopant of the first type formed in the first well, an array of memory cells formed within the second well. Each memory cell comprises a first electrode and a second electrode respectively formed by a first and a second doped regions with dopant of the second type formed in the second well, and a control gate electrode. The memory array comprises a first plurality of strips of conductive material extending over the second well in a first direction and forming rows of memory cells, a second plurality of strips of conductive material extending over the second well in a second direction substantially orthogonal to the first direction and forming columns of memory cells, each strip of the second plurality electrically contacting the first electrodes of a respective group of memory cells, a third plurality of strips of conductive material extending over the second well in the second direction and intercalated to the strips of the second plurality, electrically contacting the second electrodes of the cells. A fourth plurality of strips of conductive material is provided extending over the second well in the second direction and intercalated to the strips of the second and the third pluralities, electrically contacting the second well in a succession of contact points distributed longitudinally to each strip of the fourth plurality.