Abstract:
A method of decoding video data includes constructing a motion vector candidate list of merge candidates for the current block of video data based on motion information from a number of neighboring blocks relative to the current block, wherein the number of neighboring blocks considered for the motion vector candidate list is based on the size of the current block, and wherein the number of neighboring blocks is greater than 5. In some examples, the method includes deriving a histogram of motion vector information for the neighboring blocks, and constructing the motion vector candidate list based on the derived histogram.
Abstract:
In general, this disclosure described techniques for pruning a list of motion vector prediction candidates based on picture order count (POC) values. A video coding device may be configured to generate the list of motion vector prediction candidates for a prediction unit (PU) of video data. The video coding device may prune a first motion vector prediction candidate from the list of motion vector prediction candidates when a POC value for a reference picture identified by the first motion vector prediction candidate is equal to a second POC value of a reference picture identified by a second motion vector prediction candidate in the list of motion vector prediction candidates. The video coding device may code the PU using the pruned list.
Abstract:
Techniques are described for processing video data to conform to a high dynamic range (HDR)/wide color gamut (WCG) color container. Operations may be applied to video data in certain color spaces to enable compression of High Dynamic Range (HDR) and Wide Color Gamut (WCG) video in such a way that an existing receiver without HDR and WCG capabilities would be able to display a viewable Standard Dynamic Range (SDR) video from the received bitstream without any additional processing. Certain embodiments enable delivery of a single bitstream from which an existing decoder obtains the viewable SDR video directly and an HDR capable receiver reconstruct the HDR and WCG video by applying the specified processing. Such embodiments may improve the compression efficiency of hybrid based video coding systems utilized for coding HDR and WCG video data.
Abstract:
This disclosure relates to processing video data, including processing video data that is represented by an HDR/WCG color representation. In accordance with one or more aspects of the present disclosure, one or more Supplemental Enhancement Information (SEI) Messages may be used to signal syntax elements and or other information that allow a video decoder or video postprocessing device to reverse the dynamic range adjustment (DRA) techniques of this disclosure to reconstruct the original or native color representation of the video data. Dynamic range adjustment (DRA) parameters may be applied to video data in accordance with one or more aspects of this disclosure in order to make better use of an HDR/WCG color representation, and may include the use of global offset values, as well as local scale and offset values for partitions of color component values.
Abstract:
Techniques are described for identifying and reducing the incidence of artifacts in video using color gamut scalability (CGS) parameters and tables in scalable video coding (SVC). Derivation of CGS mapping tables are performed for each partition of pixel values in a color space. The pixel value domain is split into partitions and each is optimized independently. Color prediction techniques for CGS may be used by video encoders and/or video decoders to generate inter-layer reference pictures when a color gamut for a lower layer of video data is different than a color gamut for a higher layer of the video data. When mapped values are used as inter-layer predication references for the enhancement layer blocks, artifacts may appear in some frames of the sequences. A video encoder may identify blocks that potentially contain these artifacts and disable inter-layer prediction in those identified blocks.