Abstract:
A method and apparatus for 3D video coding system are disclosed. Embodiments according to the present invention apply SAO process (sample adaptive offset process) to at least one dependent-view image of the processed multi-view images if processed multi-view images are received. Also embodiments according to the present invention apply the SAO process to at least one dependent-view image of the processed multi-view images or at least one depth map of the processed multi-view depth maps if both processed multi-view images and the processed multi-view depth maps are received. The SAO can be applied to each color component of the processed multi-view images or the processed multi-view depth maps. The SAO parameters associated with a target region in one dependent-view image or in one depth map corresponding to one view may share or may be predicted by second SAO parameters associated with a source region corresponding to another view.
Abstract:
A method and apparatus for sharing information in a video decoding system are disclosed. The method derives reconstructed data for a picture from a bitstream, where the picture is partitioned into multiple slices. An information-sharing flag is parsed from the bitstream associated with a current reconstructed slice. If the information-sharing flag indicates information sharing, shared information is determined from a part of the bitstream not corresponding to the current reconstructed slice, and in-loop filtering process is applied to the current reconstructed slice according to the shared information. If the information-sharing flag indicates filter no information sharing, individual information is determined from a part of the bitstream corresponding to the current reconstructed slice, and in-loop filtering process is applied to the current reconstructed slice according to the individual information. A method for a corresponding encoder is also disclosed.
Abstract:
A method and apparatus for coding video data in a scalable or three-dimensional video coding system are disclosed. In one embodiment, context for the input data associated with an inter-layer or inter-view coding syntax element of a current block in an enhancement-layer (EL) or a dependent view is formed or the input data is parsed to identify the context based on information associated with one or more neighboring blocks, information associated with the current block, or both. In another embodiment, encoding or decoding is applied to the input data associated with the current block in the EL using inter-layer texture prediction based on the BL block in the BL, wherein a flag indicating whether there is any transform coefficient coded for the current block is signaled.
Abstract:
A method and apparatus for sharing information in a video decoding system are disclosed. The method derives reconstructed data for a picture from a bitstream, where the picture is partitioned into multiple slices. An information-sharing flag is parsed from the bitstream associated with a current reconstructed slice. If the information-sharing flag indicates information sharing, shared information is determined from a part of the bitstream not corresponding to the current reconstructed slice, and in-loop filtering process is applied to the current reconstructed slice according to the shared information. If the information-sharing flag indicates filter no information sharing, individual information is determined from a part of the bitstream corresponding to the current reconstructed slice, and in-loop filtering process is applied to the current reconstructed slice according to the individual information. A method for a corresponding encoder is also disclosed.
Abstract:
A method and apparatus for significance map coding for 4×4 TUs (transform units) and 8×8 TUs of video data are disclosed. The method comprises receiving at least one context selection table for a first TU associated with a first color component and generating a derived context selection table for a second TU associated with a second color component from said at least one context selection table. The first TU has a first size comprising of 4×4 and 8×8. The second TU has a second size comprising of 4×4 and 8×8. The second size is different from the first size, the second color component is different from the first color component, or both the second size is different from the first size and the second color component is different from the first color component. The derived context selection table is then used for significance map processing of the second TU.
Abstract:
Video encoding or decoding methods and apparatuses include receiving input data associated with a current block in a current picture, determining a preload region in a reference picture shared by two or more coding configurations of affine prediction or motion compensation or by two or more affine refinement iterations, loading reference samples in the preload region, generating predictors for the current block, and encoding or decoding the current block according to the predictors. The predictors associated with the affine refinement iterations or coding configurations are generated based on some of the reference samples in the preload region.
Abstract:
A method for specifying layout of subpictures in video pictures is provided. A video decoder receives data from a bitstream to be decoded as a current picture of a video. For a current subpicture of a set of subpictures of the current picture, the video decoder determines a position of the current subpicture based on a width and a height of the current picture and a previously determined width and height of a particular subpicture in the set of subpictures. The video decoder reconstructs the current picture and the current subpicture based on the determined position.
Abstract:
Video processing methods and apparatuses in a video encoding or decoding system for processing a video picture partitioned into blocks with one or more partition constraints. The video encoding or decoding system receives input data of a current block and checks whether a predefined splitting type is allowed to partition the current block according to first and second constraints. The first constraint restricts each sub-block partitioned from the current block to be completely contained in one pipeline unit, and the second constraint restricts each sub-block partitioned from the current block to contain one or more complete pipeline units. The pipeline units are non-overlapping units in the video picture designed for pipeline processing. The current block is not partitioned by the predefined splitting type if any sub-block partitioned by the predefined splitting type violates both the first and second constraints. The system encodes or decodes the current block.
Abstract:
Video data processing methods and apparatuses receive input data associated with a current split node partitioned from a parent node by a splitting type, determine a depth of the current split node according to the splitting type, and compare the depth of the current split node with a maximum delta QP signaling depth. A video decoding system derives a delta QP from one or more syntax elements signaled in a TU associated with the current split node according to the comparing result, reconstructs a final QP for the current split node based on a reference QP and the delta QP, and decodes one or more TUs associated with the current split node using the final QP. The depth is counted in a way considering different splitting types and splitting partitions.
Abstract:
Various schemes pertaining to pre-encoding processing of a video stream with motion compensated temporal filtering (MCTF) are described. An apparatus determines a filtering interval for a received raw video stream having pictures in a temporal sequence. The apparatus selects from the pictures a plurality of target pictures based on the filtering interval, as well as a group of reference pictures for each target picture to perform pixel-based MCTF, which generates a corresponding filtered picture for each target picture. The apparatus subsequently transmits the filtered pictures as well as non-target pictures to an encoder for encoding the video stream. Subpictures of natural images and screen content images are separately processed by the apparatus.