Abstract:
There is provided a method of transmitting control information in a Wireless Local Area Network (WLAN) system, comprising transmitting first control information by means of cyclic shift delay diversity beam-forming and transmitting second control information. The first control information comprises information necessary for each of a plurality of target stations of the second control information to receive the second control information. The second control information beamformed and transmitted to the plurality of target stations.
Abstract:
A method of transmitting a Physical Layer Convergence Procedure (PLCP) frame in a Very High Throughput (VHT) Wireless Local Area Network (WLAN) system includes generating a MAC Protocol Data Unit (MPDU) to be transmitted to a destination station (STA), generating a PLCP Protocol Data Unit (PPDU) by adding a PLCP header, including an L-SIG field containing control information for a legacy STA and a VHT-SIG field containing control information for a VHT STA, to the MPDU, and transmitting the PPDU to the destination STA. A constellation applied to some of Orthogonal Frequency Division Multiplex (OFDM) symbols of the VHT-SIG field is obtained by rotating a constellation applied to an OFDM symbol of the L-SIG field.
Abstract:
A method for transmitting a sounding reference signal in a MIMO wireless communication system and an apparatus therefor are disclosed. The method for transmitting sounding reference signals (SRSs) in a MIMO wireless communication system comprises receiving sounding reference signal parameters from a base station; receiving information of the number of sounding reference signals which will be transmitted at a transmission time instant from the base station; if a plurality of sounding reference signals are provided, generating the sounding reference signals corresponding to each of the plurality of antennas by using the sounding reference signal parameters; and transmitting the generated sounding reference signals to the base station through their corresponding antennas at a specific transmission instant.
Abstract:
A method of allocating resources for transmitting a signal in a Multiple-Input Multiple-Output (MIMO) wireless communication system is disclosed. The method includes allocating one or more spatial resources of a plurality of spatial resources corresponding to first Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbols to a first transport block, allocating one or more other spatial resources of the plurality of spatial resources corresponding to the first SC-FDMA symbols to a second transport block, and allocating spatial resources corresponding to second SC-FDMA symbols to the first transport block and the second transport block.
Abstract:
A method and device for transmitting a plurality of data units in a wireless local area network (WLAN) are discussed. The method includes obtaining by a station (STA) a transmission opportunity (TXOP), wherein the STA has a right to initiate frame exchange sequences during the TXOP; transmitting during the TXOP, a first data unit of the plurality of data units, wherein the first data unit comprises a signal field including information related to a bandwidth of the first data unit; selecting a bandwidth of a second data unit of the plurality of data units to be narrower than the bandwidth of the first data unit; and transmitting during the TXOP, the second data unit, wherein the second data unit comprises a signal field including information related to the bandwidth of the second data unit, wherein the first data unit is transmitted immediately before the second data unit.
Abstract:
A method for channel-coding information bits using a code generation matrix including 32 rows and A columns corresponding to length of the information bits includes, channel-coding the information bits having “A” length using basis sequences having 32-bit length corresponding to columns of the code generation matrix, and outputting the channel-coded result as an output sequence. If “A” is higher than 10, the code generation matrix is generated when (A−10) additional basis sequences were added as column-directional sequences to a first or second matrix. The first matrix is a TFCI code generation matrix composed of 32 rows and 10 columns used for TFCI coding. The second matrix is made when at least one of an inter-row location or an inter-column location of the first matrix was changed. The additional basis sequences satisfy a value 10 of a minimum Hamming distance.
Abstract:
A method for generating a channel quality indicator (CQI) in a mobile communication system is presented. The method includes grouping a number of subcarriers to form at least one channel quality indicator subband for generating a channel quality indicator, and generating a channel quality indicator in each channel quality indicator subband, wherein a size of each channel quality indicator subband is dependent on a system bandwidth value and is an integer multiple of a downlink frequency resource unit size, wherein the downlink frequency resource unit size is prescribed according to the system bandwidth value.
Abstract:
A method for channel-coding information bits using a code generation matrix including 32 rows and A columns corresponding to length of the information bits includes, channel-coding the information bits having “A” length using basis sequences having 32-bit length corresponding to columns of the code generation matrix, and outputting the channel-coded result as an output sequence. If “A” is higher than 10, the code generation matrix is generated when (A-10) additional basis sequences were added as column-directional sequences to a first or second matrix. The first matrix is a TFCI code generation matrix composed of 32 rows and 10 columns used for TFCI coding. The second matrix is made when at least one of an inter-row location or an inter-column location of the first matrix was changed. The additional basis sequences satisfy a value 10 of a minimum Hamming distance.
Abstract:
A method and device for receiving a data block in a wireless communication system, the method performed by a receiver. The method includes: receiving a physical layer protocol data unit (PPDU) from a transmitter over an operating channel, the PPDU including a signal field, a Very High Throughput-Signal-A (VHT-SIG-A) field, a Very High Throughput-Signal-B (VHT-SIG-B) field and a padded data block, generating a first data block by removing zero or more physical padding bits from the padded data block in a physical layer; and generating a second data block by removing zero or more Medium Access Control (MAC) padding bits from the first data block in a MAC layer.
Abstract:
A method is provided for transmitting a data frame by a station in a wireless local area network. The station obtains a transmission opportunity (TXOP) for a bandwidth, the TXOP indicating an interval of time during which the station has a right to initiate frame exchange sequences onto wireless medium. The station sets a transmit bandwidth parameter of a non-initial physical layer protocol data unit (PPDU) of a plurality of PPDUs to be transmitted during the TXOP based on a transmit bandwidth parameter of a preceding PPDU of the plurality of PPDUs. The transmit bandwidth parameter of the non-initial PPDU is set to be same or narrower than the transmit bandwidth parameter of the preceding PPDU. A bandwidth indicated by the transmit bandwidth parameter of the non-initial PPDU or the preceding PPDU includes at least one of 20 MHz, 40 MHz and 80 MHz. The station transmits the non-initial PPDU during the TXOP.