Abstract:
Technology for dynamically reconfiguring an uplink-downlink (UL-DL) time-division duplexing (TDD) configuration is disclosed. In an example, a user equipment (UE) can have computer circuitry configured to: Receive a UL-DL reconfiguration indicator from a node to dynamically reconfigure a flexible subframe (FlexSF) to a different UL-DL transmission direction from a semi-static UL-DL configuration; apply a DL channel timing based on a DL favored UL-DL configuration; and apply a UL channel timing based on a UL favored UL-DL configuration. The FlexSF can be capable of changing an UL-DL transmission direction. The DL favored UL-DL configuration can include more DL subframes than a semi-static UL-DL TDD configuration for the UE, and the UL favored UL-DL configuration includes more UL subframes than a semi-static UL-DL TDD configuration for the UE.
Abstract:
Novel adaptive silencing schemes for device-to-device (D2D) discovery based on loading conditions in a discovery zone are disclosed herein. These adaptive silencing schemes can be used to mitigate interference and data collisions in networks where D2D connections can be formed. In some embodiments, a silencing factor is used to probabilistically determine whether a user equipment (UE) will transmit one or more D2D discovery signals in the discovery zone. Loading conditions in a current discovery zone can be estimated using several different approaches and metrics described herein. The silencing factor can be increased or decreased for a subsequent discovery zone based on the values of one or more of the metrics described herein for the current discovery zone.
Abstract:
Embodiments of a system and method for distributed channel access for device-to-device (D2D) communication in a wireless network are generally described herein. User equipment (UE) may transmit a connection identifier (CID) code at a beginning of a contention window to request channel access for a D2D transmission to a receiving device. Links for D2D transmissions from a transmitting device to a receiving device are identified by a CID that is mapped to a CID code. The UE may receive a bandwidth grant from the receiving device during the contention window, along with bandwidth grants for other CIDs, in an order based on a priority level of the CID. The UE may transmit data after reception of the bandwidth grants in time-frequency resources indicated in an associated one of the bandwidth grants. In some embodiments, spatial-reuse and variable resource size allocation are supported.