Abstract:
Techniques for suggesting accessory devices controlled by an application executing on a mobile device are disclosed. A method includes measuring one or more sensor values to determine a data point at each of a plurality of first times, associating an accessory device with each of the data points, clustering the data points within a threshold distance of each other to create a plurality of clusters. The method also includes, after clustering the data points, measuring one or more sensor values to determine one or more current data points at a second time, determining that one or more current data points at the second time corresponds to a first cluster of the plurality of clusters, identifying a first accessory device associated with one or more of the data points in the first cluster, and providing a message using the application.
Abstract:
A relay service can relay messages between controllers and electronically controllable accessory devices that may be located remotely from the controllers. Relaying of messages by the relay service can be decoupled from any knowledge of the functionality of the accessory or the content of the messages. Device identification and relaying of messages can be managed using “relay aliases” that are meaningful only to the relay service and the endpoint devices (the controller and accessory). The endpoint devices can implement end-to-end security for messages transported by the relay service.
Abstract:
A uniform protocol can facilitate secure, authenticated communication between a controller device and an accessory device that is controlled by the controller. An accessory and a controller can establish a pairing, the existence of which can be verified at a later time and used to create a secure communication session. The accessory can provide an accessory definition record that defines the accessory as a collection of services, each service having one or more characteristics. Within a secure communication session, the controller can interrogate the characteristics to determine accessory state and/or modify the characteristics to instruct the accessory to change its state.
Abstract:
A data transfer process can include multiple verification features usable by a “source” device to ensure that a “destination” device is authorized to receive a requested data object. The source device and destination device can communicate via a first communication channel (which can be on a wide-area network) to exchange public keys, then use the public keys to verify their identities and establish a secure session on a second communication channel (which can be a local channel). The data object can be transferred via the secure session. Prior to sending the data object, the source device can perform secondary verification operations (in addition to the key exchange) to confirm the identity of the second device and/or the locality of the connection on the second communication channel.
Abstract:
A policy-based framework is described. This policy-based framework may be used to specify the privileges for logical entities to perform operations associated with an access-control element (such as an electronic Subscriber Identity Module) located within a secure element in an electronic device. Note that different logical entities may have different privileges for different operations associated with the same or different access-control elements. Moreover, the policy-based framework may specify types of credentials that are used by the logical entities during authentication, so that different types of credentials may be used for different operations and/or by different logical entities. Furthermore, the policy-based framework may specify the security protocols and security levels that are used by the logical entities during authentication, so that different security protocols and security levels may be used for different operations and/or by different logical entities.
Abstract:
Methods and apparatus for the deployment of financial instruments and other assets are disclosed. In one embodiment, a security software protocol is disclosed that guarantees that the asset is always securely encrypted, that one and only one copy of an asset exists, and the asset is delivered to an authenticated and/or authorized customer. Additionally, exemplary embodiments of provisioning systems are disclosed that are capable of, among other things, handling large bursts of traffic (such as can occur on a so-called “launch day” of a device).
Abstract:
An automated environment can monitor its resource consumption at the environment level and detect anomalies. Resource consumption can be monitored using a sparse set of sensors that provide information about the total resource consumption of the automated environment. The sensor data can be analyzed together with information about a behavioral routine of users in the automated environment to define a baseline resource consumption pattern. Once a baseline resource consumption pattern is established, anomalies in resource consumption can be detected and reported to users.
Abstract:
Controllers can be used to control the operation of various accessories. A group of accessories can be organized into an accessory network that can facilitate coordinated control of multiple accessories. The accessory network can be organized according to an environment model that can include a hierarchical representation of a physical environment where accessories are present. The environment model can be synchronized across different controllers that have access to the accessories.
Abstract:
A first device can receive a delegation message from a second device. The delegation message can include a trigger data object that defines a triggered action set including a triggering event and an action to be performed by an accessory device in response to the triggering event. The first device can perform consistency checking of the received trigger data object relative to one or more previously received trigger data objects to determine whether a conflict exists.
Abstract:
Techniques for suggesting accessory devices controlled by an application executing on a mobile device are disclosed. A method includes measuring one or more sensor values using one or more sensors of a mobile device and the one or more sensor values are determined from one or more signals emitted by a first one or more accessory devices. An area of a physical space for the first one or more accessory devices can be determined based on the one or more sensor values. A second one or more accessory devices associated with the same area as the first one or more accessory devices can be suggested to a user.