Abstract:
Representative embodiments described herein set forth techniques for optimizing large-scale deliveries of electronic Subscriber Identity Modules (eSIMs) to mobile devices. Specifically, instead of generating and assigning eSIMs when mobile devices are being activated—which can require significant processing overhead—eSIMs are pre-generated with a basic set of information, and are later-assigned to the mobile devices when they are activated. This can provide considerable benefits over conventional approaches that involve generating and assigning eSIMs during mobile device activation, especially when new mobile devices (e.g., smartphones, tablets, etc.) are being launched and a large number of eSIM assignment requests are to be fulfilled in an efficient manner.
Abstract:
Systems, methods, and computer-readable media for provisioning credentials on an electronic device are provided. In one example embodiment, a secure platform system may be in communication with an electronic device and a financial institution subsystem. The secure platform system may be configured to, inter alia, detect a selection of a particular commerce credential, access communication mechanism data indicative of at least one communication mechanism of the device, where the at least one mechanism is configured to receive a communication on the device, transmit information to the financial subsystem, where the information includes the mechanism data and the selection of the particular commerce credential, and instruct the financial subsystem to provision the particular commerce credential in a disabled state on the device and communicate credential enablement data to the device using a particular communication mechanism of the at least one communication mechanism indicated by the communication mechanism data.
Abstract:
The disclosed technology provides enhanced financial statements such as credit statements that provide customized payment options to a customer that takes into account the total amount owed by the customer, and past payments made by the customer. The customized payment options are determined with the goal of providing more payment options that encourage financial health, while not overwhelming the customer with too many options or irrelevant options. The customized payment options can be displayed in an interactive user interface for paying a credit statement that can visually inform a user of the benefit of the respective payment options with respect to the impact of the respective payment option on the customer's financial health—at least as it pertains to a credit account for which the statement was issued.
Abstract:
Representative embodiments described herein set forth techniques for optimizing large-scale deliveries of electronic Subscriber Identity Modules (eSIMs) to mobile devices. Specifically, instead of generating and assigning eSIMs when mobile devices are being activated—which can require significant processing overhead—eSIMs are pre-generated with a basic set of information, and are later-assigned to the mobile devices when they are activated. This can provide considerable benefits over conventional approaches that involve generating and assigning eSIMs during mobile device activation, especially when new mobile devices (e.g., smartphones, tablets, etc.) are being launched and a large number of eSIM assignment requests are to be fulfilled in an efficient manner.
Abstract:
Representative embodiments described herein set forth techniques for provisioning bootstrap electronic Subscriber Identity Modules (eSIMs) to mobile devices. According to some embodiments, a mobile device can be configured to issue, to an eSIM selection server, a bootstrap eSIM request that includes (i) metadata associated with the mobile device, and (ii) metadata associated with an electronic Universal Integrated Circuit Card (eUICC) included in the mobile device. In turn, the eSIM selection server selects and binds a particular bootstrap eSIM to the mobile device, and provides information to the mobile device that enables the mobile device to obtain the particular bootstrap eSIM from one or more eSIM servers. When the mobile device obtains the particular bootstrap eSIM, the mobile device can interface with a mobile network operator (MNO) and obtain a complete eSIM that enables the mobile device to access services provided by the MNO.
Abstract:
Apparatus and methods for storing and controlling access control clients. In one embodiment, transmitting and receiving devices ensure that only one copy of an eSIM is active at any time. Specifically, each transferred eSIM is encrypted for the destination device; the eSIM from the source device is deleted, deactivated, or otherwise rendered unusable. Various aspects of network infrastructure are also described, including electronic Universal Integrated Circuit Card (eUICC) appliances, and mobile devices. Various scenarios for transfer of eSIMs are also disclosed.
Abstract:
Systems, methods, and computer-readable media for provisioning credentials on an electronic device are provided. In one example embodiment, a secure platform system may be in communication with an electronic device and a financial institution subsystem. The secure platform system may be configured to, inter alia, detect a selection of a particular commerce credential, access communication mechanism data indicative of at least one communication mechanism of the device, where the at least one mechanism is configured to receive a communication on the device, transmit information to the financial subsystem, where the information includes the mechanism data and the selection of the particular commerce credential, and instruct the financial subsystem to provision the particular commerce credential in a disabled state on the device and communicate credential enablement data to the device using a particular communication mechanism of the at least one communication mechanism indicated by the communication mechanism data.
Abstract:
To facilitate conducting a financial transaction via wireless communication between an electronic device and another electronic device, the electronic device determines a unique transaction identifier for the financial transaction based on financial-account information communicated to the other electronic device. The financial-account information specifies a financial account that is used to pay for the financial transaction. Moreover, the unique transaction identifier may be capable of being independently computed by one or more other entities associated with the financial transaction (such as a counterparty in the financial transaction or a payment network that processes payment for the financial transaction) based on the financial-account information communicated by the portable electronic device. The electronic device may also associate receipt information, which is subsequently received from a third party (such as the payment network), with the financial transaction by comparing the determined unique transaction identifier to the computed unique transaction identifier.
Abstract:
Systems, methods, and computer-readable media for provisioning credentials on an electronic device are provided. In one example embodiment, a secure platform system may be in communication with an electronic device and a financial institution subsystem. The secure platform system may be configured to, inter alia, receive user account information from the electronic device, authenticate a user account with a commercial entity using the received user account information, detect a commerce credential associated with the authenticated user account, run a commercial entity fraud check on the detected commerce credential, commission the financial institution subsystem to run a financial entity fraud check on the detected commerce credential based on the results of the commercial entity fraud check, and facilitate provisioning of the detected commerce credential on the electronic device based on the results of the financial entity fraud check. Additional embodiments are also provided.
Abstract:
The disclosed technology provides enhanced financial statements such as credit statements that provide customized payment options to a customer that takes into account the total amount owed by the customer, and past payments made by the customer. The customized payment options are determined with the goal of providing more payment options that encourage financial health, while not overwhelming the customer with too many options or irrelevant options. The customized payment options can be displayed in an interactive user interface for paying a credit statement that can visually inform a user of the benefit of the respective payment options with respect to the impact of the respective payment option on the customer's financial health—at least as it pertains to a credit account for which the statement was issued.