Abstract:
A device having one or more an acoustic modules. The acoustic module includes an acoustic element and a cavity that is acoustically coupled to the acoustic element. The module also includes a first conductive element that is configured to generate a first surface charge on a first region of an interior surface of the cavity. A second conductive element is configured to generate a second surface charge on a second region of the interior surface of the cavity. The first and second charge on the first and second regions of the interior surfaces of the cavity may be selectively applied to facilitate movement of a liquid held within the cavity.
Abstract:
Systems, methods, and devices are disclosed for applying concealment of components of an electronic device. In one embodiment, an electronic device may include a component that is disposed behind a display (e.g., a transparent organic light-emitting diode (OLED) display) that is configured to selectively become transparent at certain transparency regions. Additionally, the electronic device includes data processing circuitry configured to determine when an event requesting that the component be exposed occurs. The data processing circuitry may control portions of the display to become transparent, to expose the component upon the occurrence of the event requesting that the component be exposed.
Abstract:
Apparatus, systems and methods for shock mounting glass for an electronic device are disclosed. The glass for the electronic device can provide an outer surface for at least a portion of a housing for the electronic device. In one embodiment, the shock mounting can provide a compliant interface between the glass and the electronic device housing. In another embodiment, the shock mounting can provide a mechanically actuated retractable. For example, an outer glass member for an electronic device housing can be referred to as cover glass, which is often provided at a front surface of the electronic device housing.
Abstract:
An electronic device may have a hollow display cover structure. The hollow display cover structure may be formed from a structure having an inner surface. The structure may be an elongated member having a longitudinal axis. A material such as sapphire, other crystalline materials, or other transparent materials may be used in forming the hollow display cover structure. A flexible display layer such as an organic light-emitting diode display layer or other flexible display structure may be wrapped around the longitudinal axis to cover the interior surface of the hollow display cover structure. The electronic device may have a touch sensor, accelerometer, gyroscope, and other sensors for gathering input such as user input. The electronic device may use one or more sensors to gather information on rotational motion of the device and can display content on the flexible display layer accordingly.
Abstract:
Embodiments of the present disclosure provide a circuit board in which the need for board-to-board connectors is substantially reduced or eliminated. Specifically embodiments disclosed herein describe a flexible substrate for use with a computing device. A first module is surface mounted on a first side of the flexible substrate and a second module is surface mounted on a second side of the flexible substrate. A rigid circuit board is coupled to either the first side of the flexible substrate or the second side of the flexible substrate. Further, the flexible substrate is bendable such that at least one of the first module and the second module are positionable with respect to the rigid circuit board and with respect to the other of the first module and the second module.
Abstract:
A method and system for performing maintenance, repair and recalibration functions on a portable electronic device so as to be undetected by a user. The portable electronic device senses when a user is not in close proximity to the device or when the device is otherwise in an environment which will make the performance of the functions undetectable by a user.
Abstract:
An electronic device may include a display. The display may be an organic light-emitting diode display. The organic light-emitting diode display may have a substrate layer, a layer of organic light-emitting diode structures, and a layer of sealant. Vias may be formed in the substrate layer. The vias may be formed before completion of the display or after completion of the display. The vias may be filled with metal using electroplating or other metal deposition techniques. The vias may be connected to contacts on the rear surface of the display. The vias may be located in active regions of the display or inactive regions of the display. The display may include a top surface emission portion and a bottom surface emission portion.
Abstract:
An electronic device may have structures that are coupled together using conductive adhesive such as anisotropic conductive film and other adhesives. The structures that are coupled together may include a touch sensor structure formed from electrodes on the inner surface of a display cover layer, a display module having display layers such as a thin-film transistor layer, and circuitry mounted on substrates such as printed circuits. Conductive signal path structures may be used in routing signals within the electronic device. The conductive signal path structures may be formed from pins that are embedded within injection molded plastic, from metal traces such as laser-deposited metal traces that are formed on the surface of a plastic member or other dielectric, from metal structures that run within channels in a plastic, printed circuit traces, and other signal path structures.
Abstract:
A device having one or more an acoustic modules. The acoustic module includes an acoustic element and a cavity that is acoustically coupled to the acoustic element. The module also includes a first conductive element that is configured to generate a first surface charge on a first region of an interior surface of the cavity. A second conductive element is configured to generate a second surface charge on a second region of the interior surface of the cavity. The first and second charge on the first and second regions of the interior surfaces of the cavity may be selectively applied to facilitate movement of a liquid held within the cavity.
Abstract:
An electronic device may be provided with printed circuits. Electrical components may be interconnected using signal paths formed from metal traces in the printed circuits. The printed circuits may include flexible printed circuits with bent configurations. The flexible printed circuits may be provided with integral bend retention structures. A bend retention structure may be formed from a polymer layer, a solder layer, a stiffener formed from metal or polymer that is attached to flexible printed circuit layers with adhesive, a conformal plastic coating that covers exposed metal traces at a bend, a metal stiffener with screw holes, a shape memory alloy, a portion of a flexible printed circuit dielectric substrate layer with a reduced elongation at yield value, or combinations of these structures. The bend retention structure maintains a bend in a bent flexible printed circuit.