摘要:
An apparatus used to assist a surgeon in surgery is divided into two parts, proximal and distal. The apparatus has a number of rigid links which rotate about pivots to position and re-position an instrument, like a surgical instrument, at a work point proximal to a patient but remote from the apparatus. The links cooperate in a way to move the manipulator about a center-of-motion with orthogonally decoupled degrees of freedom resolved at the work point.The proximal part of the apparatus is adjustably fixed to a stationary object, like an operating table, while the distal part of the apparatus holds the instrument. Certain links which can be adjusted in length, move the distal part with respect to the proximal part of the apparatus. In this manner, the work point of the manipulator and the working radius of the apparatus are changed without moving the proximal part. Actuators, manual or remotely (computer) controlled, both rotate the links about their pivots and adjust the length of the adjustable links. All the actuators can be mounted on the proximal part of the apparatus and electrically isolated from the manipulator in order to reduce the shock hazard to the patient.
摘要:
A robotic surgical system includes a multiple degree of freedom manipulator arm having a surgical tool. The arm is coupled to a controller for controllably positioning the surgical tool within a three dimensional coordinate system. The system further includes a safety monitoring processor for determining the position of the surgical tool in the three dimensional coordinate system relative to a volumetric model. The volumetric model may be represented as a constructive solid geometry (CSG) tree data structure. The system further includes an optical tracking camera system disposed for imaging a region of space that includes at least a portion of the manipulator arm. An output of the camera system is coupled to the processor that processes the volumetric model for determining if the surgical tool is positioned outside of the volumetric model. The system further includes a strain gage for detecting slippage in three dimensions between an immobilized tissue, such as bone, and a reference point. The system also includes multiple and redundant safety features for suspending a motion of the surgical tool to prevent the tool from operating outside of the predetermined volume of space.
摘要:
According to some embodiments of the present invention, a system for stereo reconstruction from a monoscopic endoscope is provided. The monoscopic endoscope comprising an image pick-up element at a distal end thereof and a working channel defined by a body of the monoscopic endoscope. The working channel provides a port at the distal end of the monoscopic endoscope. The system for stereo reconstruction comprises a light patterning component configured to be disposed within the working channel of the monoscopic endoscope such that a light emitting end of the light patterning component will be fixed with a defined relative distance from the distal end of the image pick-up element. The system for stereo reconstruction also includes a data processor adapted to be in communication with the image pick-up element. The light patterning component forms a pattern of light that is projected onto a region of interest. The data processor is configured to receive an image signal of the region of interest that includes the pattern, and determine a distance from the endoscope to the region of interest based on the image signal and based on the defined relative distance between the light emitting end of the light patterning component and the distal end of the image pick-up element.
摘要:
A system for operating within an interior region of the eye, or other organ, includes a delivery channel having a proximal portion located exterior to the eye and a distal portion positionable within the interior region of the eye, wherein the distal portion of the delivery channel defines an outer diameter that is smaller than or equal to about 18 gauge, and a micro-robot extendable from the distal portion of the delivery channel, wherein the micro-robot is remotely operable to change shape within the interior region of the eye.
摘要:
A surgical instrument has a surgical tool that has a proximal end and a distal end, and an optical sensor that has at least a portion attached to the surgical tool. The surgical tool has a portion that is suitable to provide a reference portion of the surgical tool, and the optical sensor has an end fixed relative to the reference portion of the surgical tool such that the reference portion of the surgical tool can be detected along with tissue that is proximate or in contact with the distal end of the surgical tool while in use.
摘要:
Disclosed is a surgical needle, or active cannula, that is capable of following a complex path through cavities and tissue within a patient's anatomy. The needle has a plurality of overlapping flexible tubes, each of which has a pre-formed curvature and a pre-determined flexibility. Each of the plurality of flexible tubes is selected based on their respective pre-formed curvature and flexibility so that a given overlap configuration causes the combination of overlapping flexible tubes to form a predetermined shape that substantially matches a desired path through the anatomy. By individually controlling the translation and angular orientation of each of the flexible tubes, the surgical needle may be guided through the anatomy according to the desired path.
摘要:
The system and method includes a manipulator for manipulating a surgical instrument relative to a patient's body and, a position sensor for sensing the position of the surgical instrument relative to the patient's body. The manipulator can be manually or computer actuated and can have brakes to limit movement. In a preferred embodiment, orthogonal only motion between members of the manipulator is provided. The position sensor includes beacons connected to the patient and manipulator or surgical instrument and, a three dimensional beacon sensor adapted to sense the location and position of the beacons. Redundant joint sensors on the manipulator may also be provided. The system and method uses a computer to actively interact with the surgeon and can use various different input and output devices and modes.
摘要:
The system and method includes a manipulator for manipulating a surgical instrument relative to a patient's body and, a position sensor for sensing the position of the surgical instrument relative to the patient's body. The manipulator can be manually or computer actuated and can have brakes to limit movement. In a preferred embodiment, orthogonal only motion between members of the manipulator is provided. The position sensor includes beacons connected to the patient and manipulator or surgical instrument and, a three dimensional beacon sensor adapted to sense the location and position of the beacons. Redundant joint sensors on the manipulator may also be provided. The system and method uses a computer to actively interact with the surgeon and can use various different input and output devices and modes.
摘要:
A drillhole centerline determining interposer having a central cavity enables a robot to probe the interposer to learn the location and orientation of the desired drillhole. The interposer is a mushroom shaped device with a planar head and a stem dimensioned to fit snugly in the hole to be drilled. The interposer, in addition to the planar head from which the perpendicular can be calculated through multiple probes, has a central pocket concentric to the interposer stem.The method of using the drillhole centerline determining interposer is to place a number of such interposers manually in position in holes in a master part located in the work envelope of the robot. The robot operator prepositions the probe at an initial position facing the cavity of the interposer for a drillhole locating sequence for the related drillhole. In sequence, the robot moves the probe from the initial position sufficient to clear the edge of the cavity and by multiple probes determines the plane of the interposer surface platform. The robot then adjusts the yaw and pitch of the probe to orient the probe orthogonal to the platform plane (a vector parallel to the desired drillhole centerline axis). The robot, with orientation vector stored, now locates the XYZ coordinates of the drillhole by cavity probing actions determining the epicenter of the pocket.With orientation vector (pitch and yaw) known, and with coordinates (XYZ) known, the drillhole is determined.