Abstract:
A non-volatile semiconductor memory and a writing method thereof are provided for preventing miswriting induced by gate-induced-drain leakage (GIDL). The non-volatile semiconductor memory comprises a non-volatile memory cell array 10 for recording multiple values by setting a plurality of different thresholds to each memory cell transistor that is connected in series between selection transistors Qs1 and Qs2 on two terminals of a selected bit line; and a control circuit 11 for controlling writing of the data from the memory cell array 10. The control circuit 11 records two values for at least a plurality of first memory cell transistors Q0, Q1, Q32 and Q33 respectively adjacent to the selection transistors Qs1 and Qs2 on two terminals of the bit line, and records more than three values for a plurality of second transistors Q2˜Q31 other than the first memory cell transistors.
Abstract:
A bit line is shared by first and second NAND units. First and second selection transistors are connected in series between the bit line and the first NAND unit. Third and fourth selection transistors are connected in series between the bit line and the second NAND unit. A control unit changes a first and second signals and a potential of the bit line from a first level to a second level higher than a first level, and changes the potential of the bit line from the second level to the first level after changing the first signal from the second level to the first level.
Abstract:
A floating gate is formed on a semiconductor substrate via a gate insulating film. Diffused layers are formed as sources or drain regions on opposite sides of the floating gate in the semiconductor substrate. First and second control gates are formed opposite to both of the diffused layers on the opposite sides of the floating gate via an inter-gate insulating film to drive the floating gate.
Abstract:
A nonvolatile semiconductor memory which is configured to include a plurality of word lines disposed in a row direction; a plurality of bit lines disposed in a column direction perpendicular to the word lines; memory cell transistors having a charge storage layer, provided in the column direction and an electronic storage condition of the memory cell transistor configured to be controlled by one of the plurality of the word lines connected to the memory cell; a plurality of first select transistors, each including a gate electrode, selecting the memory cell transistors provided in the column direction, arranged in the column direction and adjacent to the memory cell transistors at a first end of the memory cell transistors; and a first select gate line connected to each of the gate electrodes of the first select transistors.
Abstract:
A semiconductor memory device includes: a semiconductor layer provided on an insulating substrate or an insulating layer; active areas each defined in the semiconductor layer with a device insulating film buried therein; and NAND cell units formed on the active areas, each NAND cell unit including a plurality of electrically rewritable and non-volatile memory cells connected in series, both ends of each NAND cell unit being coupled to a source line and a bit line, wherein the device has such a carrier discharging mode as to discharge channel carriers in the NAND cell unit to at least one of the source line and the bit line.
Abstract:
A semiconductor memory device includes: a semiconductor substrate; a semiconductor layer formed on the semiconductor substrate with an insulating film interposed therebetween, the semiconductor layer being in contact with the semiconductor substrate via an opening formed in the insulating film; and a NAND cell unit formed on the semiconductor layer with a plurality of electrically rewritable and non-volatile memory cells connected in series and first and second select gate transistors disposed at both ends thereof.
Abstract:
Disclosure is semiconductor device of a selective gate region, comprising a semiconductor layer, a first insulating film formed on the semiconductor layer, a first electrode layer formed on the first insulating layer, an element isolating region comprising an element isolating insulating film formed to extend through the first electrode layer and the first insulating film to reach an inner region of the semiconductor layer, the element isolating region isolating a element region and being self-aligned with the first electrode layer, a second insulating film formed on the first electrode layer and the element isolating region, an open portion exposing a surface of the first electrode layer being formed in the second insulating film, and a second electrode layer formed on the second insulating film and the exposed surface of the first electrode layer, the second electrode layer being electronically connected to the first electrode layer via the open portion.
Abstract:
An element isolating region for separating an element region of a semiconductor layer is formed in a peripheral circuit section of a semiconductor memory device, and a first conductive layer is formed with the element region with a first insulating film interposed therebetween. A second conductive layer is formed on the first conductive layer to extend into the element isolating region. A surface of that section of the second conductive layer which is positioned within the element isolating region is exposed, and a third conductive layer is formed on the second conductive layer with a second insulating film interposed therebetween. Further, a contact is electrically connected to an exposed surface of the second conductive layer.
Abstract:
Disclosure is semiconductor device of a selective gate region, comprising a semiconductor layer, a first insulating film formed on the semiconductor layer, a first electrode layer formed on the first insulating layer, an element isolating region comprising an element isolating insulating film formed to extend through the first electrode layer and the first insulating film to reach an inner region of the semiconductor layer, the element isolating region isolating a element region and being self-aligned with the first electrode layer, a second insulating film formed on the first electrode layer and the element isolating region, an open portion exposing a surface of the first electrode layer being formed in the second insulating film, and a second electrode layer formed on the second insulating film and the exposed surface of the first electrode layer, the second electrode layer being electrically connected to the first electrode layer via the open portion.
Abstract:
A nonvolatile semiconductor memory includes first and second memory cells having a floating gate and a control gate. The floating gate of the first and second memory cells is comprised a first part, and a second part arranged on the first part, and a width of the second part in an extending direction of the control gate is narrower than that of the first part. A first space between the first parts of the first and second memory cells is filled with one kind of an insulator. The control gate is arranged at a second space between the second parts of the first and second memory cells.