Abstract:
A clock receiver architecture for source synchronous digital data communication, the receiver including a forwarded clock amplifier to provide the received forwarded clock signal to a plurality of delay locked loops. Each delay locked loops provides to one or more phase interpolators a set of clock signals generated from the received forwarded clock, where the relative phases of the set of clock signals are uniformly spaced. Phase interpolators interpolate between two adjacent (with respect to phase) clock signals so as to provide a clock signal to sample received data at the center of the data eye. In some embodiments, an on-die voltage regulator provides a regulated supply voltage to the delay locked loops and phase interpolators. In some embodiments, pull-up currents and pull-down currents in the phase locked loops and phase interpolators are matched across process, supply voltage, and temperature variations so that the relative phases of the clock signals are insensitive across process, supply voltage, and temperature variations. Other embodiments are described and claimed.
Abstract:
In one embodiment, the present invention includes an apparatus having a three-dimensional (3D) interconnect with a first cavity and a second cavity, and an integrated device formed of an electronic integrated circuit (IC) bonded to at least one optoelectronic (OE) die. The integrated device is bonded to the 3D interconnect and at least partially extends into the second cavity. Other embodiments are described and claimed.
Abstract:
A fast lock mechanism for delay lock loops and phase lock loops. A first circuit is coupled to receive an input clock signal and to generate an output clock signal responsive to the input clock signal. The first circuit includes a charge pump and delay cells. The charge pump generates an operational bias voltage during operation of the first circuit to control a delay of the delay cells. A fast lock circuit is coupled to an output of the charge pump to precharge the output of the charge pump with a startup bias voltage prior to enabling the charge pump.
Abstract:
This invention is a system and method for bioremediation of hydrocarbon and organic pollution in fresh and salt water. Hydrocarbon and organic pollution digesting microbes are placed in a floating carrier where the microorganisms are exposed to the pollution and the pollution is digested. The floating element may be a block of polymeric foam. The microbes may be supported on powder such as clay minerals, and the powder may be formed into pellets held in slits in the foam.
Abstract:
A method of generating a binary computer generated hologram for use in displaying a holographic image, the method comprising the steps of generating a complex modulation computer generated hologram corresponding to a desired reply object, transforming the complex modulation computer generated hologram into a real positive computer generated hologram, and transforming the real positive computer generated hologram into a binary computer generated hologram by comparing each element of the real positive computer generated hologram with at least one neighboring element and replacing the compared element with a binary value which depends upon the result of the comparison.
Abstract:
An optical network is formed of multiple H-tree distribution devices, separated into different waveguide layers. The optical network receives an input optical signal, such as an optical clock signal, and makes duplicate copies of that input signal. The duplicate copies are routed through the connected H-tree distribution devices, which are arranged to produce identical, synchronized copies of the clock signal. The network can take the form of a 1×2N device, where 2N represents the number of these output signals. The H-tree distribution devices forming the network are of varying size and may be formed in different waveguide layers with different index of refraction differentials between the H-tree devices and surrounding claddings. In some forms, the optical network is integrated with optical-to-electrical converters, i.e., photodetectors, which take the optical output signals and convert them to synchronized electrical signals that may be communicated to digital circuits.
Abstract:
A VCO phase lock loop system may include a first voltage controlled oscillator that provides a first oscillation signal relative to a first frequency and a second voltage controlled oscillator that provide a second oscillation signal relative to a second frequency. A loop filter capacitor may be associated with both the first voltage controlled oscillator and the second voltage controlled oscillator. A selection device may enable components associated with the either one of the voltage controlled oscillators while disabling components associated with the other one of the voltage controlled oscillators.
Abstract:
A sense amplifier for use in conjunction with a static random access memory array (SRAM) which uses a local or column sense amplifier. The column sense amplifier is a transconductance source coupled differential pair which converts a voltage differential on bitlines from a selected memory cell in a column of memory cells whose content is being read to a current differential. A global or secondary sense amplifier inputs the current differential on sense lines from each local or column sense amplifier, converts the current differential to a voltage differential and then amplifies the voltage differential. A current differential greater than that which can be produced using prior art techniques appears on the sense lines which in turn allows the content of a memory cell being read to be determined more quickly.
Abstract:
An apparatus is provided which comprises one or more magnetoelectric spin orbit (MESO) minority gates with different peripheral complementary metal oxide semiconductor (CMOS) circuit techniques in the device layer including: (1) current mirroring, (2) complementary supply voltages, (3) asymmetrical transistor sizing, and (4) using transmission gates. These MESO minority gates use the multi-phase clock to prevent back propagation of current so that MESO gate can correctly process the input data.
Abstract:
The present disclosure is directed to systems and methods of implementing a neural network using in-memory, bit-serial, mathematical operations performed by a pipelined SRAM architecture (bit-serial PISA) circuitry disposed in on-chip processor memory circuitry. The on-chip processor memory circuitry may include processor last level cache (LLC) circuitry. The bit-serial PISA circuitry is coupled to PISA memory circuitry via a relatively high-bandwidth connection to beneficially facilitate the storage and retrieval of layer weights by the bit-serial PISA circuitry during execution. Direct memory access (DMA) circuitry transfers the neural network model and input data from system memory to the bit-serial PISA memory and also transfers output data from the PISA memory circuitry to system memory circuitry. Thus, the systems and methods described herein beneficially leverage the on-chip processor memory circuitry to perform a relatively large number of vector/tensor calculations without burdening the processor circuitry.