Abstract:
Methods and apparatus for signaling tone allocations in OFDMA communication are disclosed herein. In one aspect, the method includes determining a tone allocation which divides a plurality of tones between a plurality of wireless communication devices, the tone allocation including at least one of determining a plurality of subbands, each subband comprising an exclusive contiguous subset of the plurality of tones, at least one subband of the plurality of subbands assigned to two or more devices of the plurality of wireless communication and assigning a tone group size to each wireless communication device of the plurality of wireless communication devices, wherein the tone group size indicates a number of contiguous tones that the wireless communication device is allocated, wherein at least one tone group size is larger than one. The method also includes transmitting the tone allocation to each of the plurality of wireless communication devices.
Abstract:
Systems, methods, and devices for high-efficiency wireless frequency division multiplexing are provided. A method includes exchanging, at an access point, at least one frame reserving a wireless medium with at least one of a first and second wireless device. The method further includes receiving a first communication on a first set of wireless frequencies from the first wireless device. The method further includes receiving a second communication, at least partially concurrent with the first communication, on a second set of wireless frequencies from the second wireless device. The method further includes transmitting at least one acknowledgment of the first and second communication. The first set and the second set are mutually exclusive subsets of a set of wireless frequencies available for use by both the first and second wireless device.
Abstract:
Various aspects are provided for wireless communication channel management. For instance, aspects of an example method are provided, the method including detecting a trigger condition for changing an operating frequency of a wireless communication link between a first device and a second device. In addition, the example method may include obtaining a target operating frequency for the wireless communication link based on detecting the trigger condition. Moreover, the example method may include tuning a transceiver to the target operating frequency. In an example, the first device may be an unmanned aerial vehicle (UAV) and the second device may be a controller associated with the UAV. Additionally, example apparatuses and computer-readable media are provided for wireless communication channel management, the example apparatuses and computer-readable media being configured to perform, or store computer-executable code to perform, the disclosed example methods.
Abstract:
A method for high efficiency wireless communication is provided. In one aspect, a method of high efficiency wireless communication includes generating, at an access point, a message for transmission over at least one channel. The message includes a first signal field indicative of a length of the first message after the first signal field. The message further includes a second signal field indicative of at least one channel assignment. The second signal field has a length based on a minimum allocation size. The method further includes transmitting the message to one or more wireless devices.
Abstract:
Techniques are described for wireless communication. One or more wireless local area network (WLAN) preamble portions may span multiple 20 MHz frequency bands, and may be duplicated across a transmission bandwidth. WLAN preamble portions may include common portions for multiple receivers as well as dedicated portions for particular receivers, and common portions may be transmitted in a primary frequency band in some examples. Some techniques provide that WLAN preamble portions may be encoded using different sized code blocks. Various aspects of the disclosure also provide for signaling of resource allocations of WLAN wireless frames.
Abstract:
Systems and method for concurrent communication using high efficiency wifi are disclosed. One aspect is a method of transmitting a wireless message on a medium utilizing carrier sense multiple access (CSMA). The method includes receiving, via a first wireless device, at least a portion of a first wireless message from a second wireless device, the message including an indication of a basic service set of the second wireless device. The method also includes determining whether to defer transmission of a second wireless message based, at least in part, on the basic service set of the second wireless device.
Abstract:
Systems and methods of clear channel assessment on a wireless network are disclosed. In one aspect, a method includes determining a clear channel assessment (CCA) threshold based on a first transmission bandwidth, performing a first back-off procedure based on the determined clear channel assessment threshold; and transmitting a first wireless message in response to a completion of the first back-off procedure.
Abstract:
Methods and apparatus methods and apparatus for providing wireless messages according to various tone plans. In one aspect, an apparatus includes a processing system configured to allocate a resource for wireless communication to each of a plurality of devices. The resource includes at least one of a sub-band of frequencies or a subset of data tones within a single uplink or downlink tone plan. The processing system is further configured to provide the resource allocation to the devices. The processing system is further configured to process a message according to one of an uplink or downlink tone plan associated with at least one of the allocated sub-band or the allocated subset.
Abstract:
Techniques are described for wireless communication. A method for wireless communication at an access point may include identifying a number of stations to receive data from the access point, and generating a downlink frame to transmit the data to the identified number of stations. The downlink frame may include a first signaling field (e.g., a wireless local area network (WLAN) signaling field) directed to the identified number of stations. The first signaling field may include a first segment and a second segment. The first segment may include information common to each of the identified number of stations. The second segment may include at least one information block. Each information block may be separately encoded for each of the identified number of stations. The method may also include transmitting the downlink frame to the identified number of stations.
Abstract:
Aspects of the present disclosure relate to techniques for generating responses to extended length frames having increased symbol lengths without changing the short interframe space duration. According to certain aspects, a method for transmitting an extended length frame generally includes generating a packet having a preamble decodable by a first type of device having a first set of capabilities and a second type of device having a second set of capabilities, wherein at least a first portion of the packet is generated using an increased symbol duration or increased cyclic prefix relative to a second portion of the packet generated using a standard symbol duration or standard cyclic prefix and the packet includes padding symbols after the first portion, and outputting the generated packet for transmission.