Abstract:
A tool sharpener has a guide assembly to support a cutting tool adjacent an abrasive medium. A drive assembly advances the abrasive medium with respect to the guide assembly. A control mechanism provides a first control input value to move the medium and achieve a first material take off (MTO) rate during a coarse sharpening operation upon the tool. A second control input value from the control circuit moves the medium to achieve a lower, second MTO rate during a fine sharpening operation. The control mechanism transitions the medium from the first MTO rate to the second MTO rate responsive to a timer mechanism indicating a conclusion of a predetermined elapsed time interval.
Abstract:
A method is provided to minimize travel distance and time between correction locations on a substrate when polishing a local area of a substrate, such as a semiconductor wafer, using a location specific polishing module. A correction profile is determined and a recipe based on the correction profile is used to polish a substrate. A polishing pad assembly traverses between a first correction location and a second correction location using the combined motion of a substrate support chuck and a support arm coupled at a first end thereof to the polishing pad assembly. The chuck rotates about a center axis thereof. The positioning arm may sweep about a vertical axis disposed through a second end of the support arm. The combined motion of the chuck and the positioning arm causes the polishing pad assembly to form a spiral shaped polishing path on the substrate.
Abstract:
A machine tool of high-frequency vibration is provided. A main shaft structure of the machine tool comprises a rotating shaft, the end of which is provided with a tool holder chuck for fixing a tool holder; the upper portion of which is provided with a rotating coil portion; the main shaft structure is correspondingly provided with a stationary coil portion; and the tool holder is provided with a high-frequency vibration module. By non-contact coils, an external electric power/signal can be transmitted into the high-frequency vibration module to avoid a wear phenomenon in a contact-rotating electrode. Because the inductive coil is arranged outside of the tool holder, the manufacturing cost of the tool holder is reduced, and the convenience of changing the tool holder is increased. Moreover, the machining stability and efficiency of the tool holder are improved by a control method of sensing/feedback signals with wireless transmission.
Abstract:
Disclosed is a wafer polishing apparatus including a base, a lower surface plate disposed on the upper surface of the base, an upper surface plate disposed on the lower surface plate and a first shape adjustment unit configured to deform the shape of the lower surface of the upper surface plate so that the lower surface of the upper surface plate has one of a concave shape, a flat shape and a convex shape in a first direction, and the first direction is a direction from the lower surface plate to the upper surface plate.
Abstract:
Polishing systems and methods for polishing a substrate are provided. The polishing system includes a polishing assembly having a platen and a polishing pad over the platen. The polishing system also includes a substrate carrying assembly configured to engage a substrate to the polishing pad. The polishing system further includes a thickness sensing assembly configured to monitor a thickness of the polishing pad.
Abstract:
An electric tool is provided. The electric tool prevents anomalies in motor rotation due to dust and moisture sucked in together with a cooling wind, and is configured such that rotational position detection operations and switch operations are not affected. In the electric tool which drives a brushless DC motor using a controller, a magnetic body for rotational position detection is provided on a rotation shaft which can rotate integrally with a rotor, Hall ICs are provided to detect the rotational position of the magnetic body and output a position signal to the controller, and the magnetic body and the Hall ICs mounted on a substrate are arranged in a region isolated from the wind path of the cooling wind generated by rotation of a cooling fan. The Hall ICs are accommodated in a housing filled with resin.
Abstract:
The polishing apparatus has: a polishing pad that has a polishing surface to polish a semiconductor wafer; a polishing table to which a back surface of the polishing pad on an opposite side of the polishing surface can be attached; a top ring that is opposed to the polishing surface, and can hold the semiconductor wafer; and an eddy current sensor that is arranged in the polishing table, and detects an end point of polishing. The polishing table has on an attachment surface a projection member projecting from the attachment surface to which the polishing pad is attached. The back surface of the polishing pad has a concave portion in a portion opposed to the projection member, and at least a part of the eddy current sensor is arranged inside the projection member.
Abstract:
A method of controlling polishing includes storing a base measurement, the base measurement being a measurement of a substrate after deposition of at least one layer overlying a semiconductor wafer and before deposition of an outer layer over the at least one layer, after deposition of the outer layer over the at least one layer and during polishing of the outer layer on substrate, receiving a sequence of raw measurements of the substrate from an in-situ monitoring system, normalizing each raw measurement in the sequence of raw measurement to generate a sequence of normalized measurements using the raw measurement and the base measurement, and determining at least one of a polishing endpoint or an adjustment for a polishing rate based on at least the sequence of normalized measurements.
Abstract:
A motorized blade rest apparatus for a grinding system includes a carriage, a ram assembly, a work rest assembly, a motor, and a computer processor. The carriage moves a regulating wheel along a first axis towards and away from a work wheel. The ram assembly, which moves along a second axis parallel to the first axis, supports the carriage and the work rest assembly. The work rest assembly includes first and second slide portions and a work rest blade. The first slide portion is mounted on the ram assembly. The second slide portion, which is movable relative to the first slide portion, moves along a third axis perpendicular to the first axis. The work rest blade is mounted on the second slide portion. The motor is coupled to the second slide portion, and the computer processor controls the motor to move the second slide portion along the third axis.
Abstract:
Systems and methods for shaping leads of electronic lapping guides to reduce calibration error are provided. One such system includes a device configured to generate predictable resistance for leads of an electronic lapping guide, the device including a lapping surface, and an ELG configured to provide information indicative of a degree of lapping performed on the lapping surface, the ELG including a first electrical lead, a second electrical lead spaced apart from the first electrical lead, and a resistive element between the first electrical lead and the second electrical lead, the resistive element including a right segment, a left segment, and a middle segment that abuts each of the right segment and the left segment, where the right segment is spaced apart from the left segment and the middle segment is adjacent to the lapping surface, where the first and second electrical leads are recessed from the middle segment.