Abstract:
An electron beam system using a scanning electron microscope equipped with a function for controlling a charged state of a sample to be observed includes electron optics for obtaining image data of the scanning electron microscope, and a monitor that displays a relationship between an equation for determining a degree of separation of peaks which appear in a histogram obtained on a basis of the image data and at least one parameter among parameters for controlling the charged state of the sample. An optimized parameter for controlling the charged stage of the sample can be visually distinguished on the monitor.
Abstract:
An imprint method is constituted by a step of curing a resin material formed on a substrate in a state in which an imprint pattern of a mold is in contact or proximity with the resin material, and a step of parting the mold from the cured resin material. The parting is effected while irradiating an entire area in which the imprint pattern of the mold is formed and the cured resin material with an electromagnetic wave for ionizing gaseous molecules in an atmosphere in which the mold and the cured resin material are placed.
Abstract:
An object of the invention is to reduce the beam drift in which the orbit of the charged particle beam is deflected by a potential gradient generated by a nonuniform sample surface potential on a charged-particle-beam irradiation area surface, the nonuniform sample surface potential being generated by electrification made when observing an insulating-substance sample using a charged particle beam.Energy of the charged particle beam to be irradiated onto the sample is set so that generation efficiency of secondary electrons generated from the sample becomes equal to 1 or more. A flat-plate electrode (26) is located in such a manner as to be directly opposed to the sample. Here, the flat-plate electrode is an electrode to which a voltage can be applied independently, and which is equipped with a hole through which a primary charged particle beam can pass. Furthermore, a voltage can be applied independently to a sample stage (12) on which the sample is mounted. Here, the sample stage's surface directly opposed to the sample is formed into a planarized structure with no projections and depressions thereon. Also, diameter D of the hole provided in the flat-plate electrode (26) and distance L between the flat-plate electrode (26) and the sample are set such that a relation of D/L≦1. 5 is satisfied.
Abstract:
A charge control electrode emitting photoelectrons is disposed just above a wafer (sample) in parallel thereto, and the electrode has a through hole so that ultraviolet light can be irradiated to the wafer through the charge control electrode. Specifically, a metal plate which is formed in mesh or includes one or plural holes is used as the charge control electrode. By disposing the charge control electrode just above the sample in parallel thereto, when negative voltage is applied to the electrode, electric field approximately perpendicular to the wafer is generated. Therefore, photoelectrons are efficiently absorbed in the wafer. Also, by using the charge control electrode having approximately the same size as that of the wafer, charges on a whole surface of the wafer can be removed collectively and uniformly. Therefore, time required for the process can be reduced.
Abstract:
An apparatus includes a primary electrode and an acceleration electrode. The acceleration electrode or, alternatively, an additional secondary electrode contains a slot that extends obliquely through the acceleration electrode or through the secondary electrode. This measure allows secondary electrons to be produced in a highly effective manner.
Abstract:
One or more electron sources are utilized to inject electrons into an ion beam being transported between the polepieces of a magnet. In some embodiments, the electron sources are located in cavities in one or both polepieces of the magnet. In other embodiments, a radio frequency or microwave plasma flood gun is located in a cavity in at least one of the polepieces or between the polepieces.
Abstract:
Techniques for confining electrons in an ion implanter are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for confining electrons in an ion implanter. The apparatus may comprise a first array of magnets and a second array of magnets positioned along at least a portion of a beam path, the first array being on a first side of the beam path and the second array being on a second side of the beam path, the first side opposing the second side. At least one magnet in the first array may have a pole facing an opposite pole of a corresponding magnet in the second array.
Abstract:
In a substrate processing apparatus using a neutralized beam and a method thereof, the substrate processing apparatus includes: an ion source for emitting an ion beam at an emitting angle; reflectors at which the ion beam emitted by the ion source is incident and subject to 2n collisions (where n is a positive integer) in first and second opposite directions to neutralize the ion beam as a neutralized beam and to restore a direction of propagation of the neutralized beam to the emitting angle of the ion beam; and a substrate at which the neutralized beam generated by the reflectors is incident on to perform a process. Accordingly, an incident angle of the resultant neutralized beam is perpendicular to a substrate, while the direction of propagation of the originating ion source and the surface of the substrate are maintained to be perpendicular to each other.
Abstract:
A magnetic scanner employs constant magnetic fields to mitigate zero field effects. The scanner includes an upper pole piece and a lower pole piece that generate an oscillatory time varying magnetic field across a path of an ion beam and deflect the ion beam in a scan direction. A set of entrance magnets are positioned about an entrance of the scanner and generate a constant entrance magnetic field across the path of the ion beam. A set of exit magnets are positioned about an exit of the scanner and generate a constant exit magnetic field across the path of the ion beam.
Abstract:
A substrate processing apparatus which irradiates a substrate under processing with an electron beam and processes the substrate with the electron beam is disclosed. The substrate processing apparatus includes an electron beam generation mechanism which generates the electron beam, first area having a plurality of first static electricity deflecting devices whose thicknesses gradually increase in a traveling direction of the electron beam, and a second area disposed on a downstream side of the electron beam of the first area and having a plurality of second static electricity deflecting devices whose thicknesses are nearly same in the traveling direction of the electron beam. The substrate processing apparatus may further include a plurality of lenses whose thicknesses gradually decrease in the traveling direction of the electron beam, at least one of the plurality of lenses being disposed in each of the first area and the second area.