Abstract:
A system for sterilizing air includes an air duct for flowing the air therethrough. A first electron beam generator is positioned relative to the duct for irradiating the air flowing therethrough with a first electron beam. The first electron beam for disabling biological substances within the air.
Abstract:
An air conditioning apparatus incorporates an ion generating device that generates positive and negative ions by applying an alternating-current voltage between electrodes. The generated positive and negative ions coexist in the air and, when they attach to the surfaces of airborne bacteria, they react chemically with each other and generate radical hydroxyl and hydrogen peroxide, which extract hydrogen atoms from the cells of the bacteria and thereby kill them. This sterilizing effect is combined with the temperature-conditioning, dehumidifying, humidifying, air-purifying, and other functions of the air conditioning apparatus to bring about a comfortable and healthful indoor environment.
Abstract:
An ion generating device generates O2null(H2O)n (where n is a natural number) as negative ions and Hnull(H2O)m (where m is a natural number) as positive ions, and discharges those ions into the air so that airborne germs are killed through an oxidation reaction by hydrogen peroxide H2O2 or radical hydroxyl OH generated through as an active species a chemical reaction between the negative and positive ions. Satisfactory sterilization is achieved when the negative and positive ions are generated in such a way that the concentrations of the negative and positive ions are both 10,000 ion/cc at a distance of 10 cm from the point at which they are generated.
Abstract:
A microbe propagation preventing apparatus is provided to prevent an ion from decreasing at a time of decomposing ozone generated by gaseous discharge or ionization so as to sufficiently generate air ion, and to sufficiently prevent propagation of microbes adhering to an object by using the air ion without secondary pollution. Further, in the apparatus, a gas containing the ion is supplied into water so as to prevent the microbe propagation in the water. In the apparatus, an ozone decomposing chamber is mounted to be electrically insulated from an air duct. An electrode to remove a positive ion is mounted to obtain only a negative ion, and extend a lifetime of the obtained ion. An ion supplying portion is mounted to supply an ionized gas into a space housing the object in which microbes can be propagated, and return the ionized gas to an ionization chamber. Further, a diffusing apparatus is provided to transform the ionic gas into bubbles so as to feed the bubbles into the water in the water reservoir.
Abstract:
In a first embodiment of the method and apparatus, the oxidant is loaded upon a support bed and is continuously regenerated by an ozone generator located upstream from the support bed. The ozone generator has a capacity less than the peak load requirement for the oxidant but fully regenerates the oxidant during low load periods. An ozone detector is located downstream from the support bed and includes a control circuit for selectively deactivating the ozone generator when the ozone downstream from the support bed exceeds a predetermined level. The support bed is composed of inert or adsorbing granular material. In a second embodiment, an aqueous solution containing a water soluble oxidant is applied to the support bed and is rinsed out following a purification cycle. The rinsed oxidant is replaced by fresh oxidant from a reservoir and the rinsed, spent oxidant is regenerated in an electrolytic or chemical regenerator and returned to the oxidant reservoir. Parallel, alternatively operated, conduit sections including support beds therein may be provided so that one conduit section is operative to purify air flow while the other conduit section is being regenerated.
Abstract:
Disclosed is an air purifier, which comprises a shell with an air inlet and an air outlet, an ecological purification system with a flowerpot assembly, a microorganism box and a water tank arranged in sequence, a filtering system, and a control system for carrying out control. The water of the ecological purification system flows through the filtering system to bring dust and VOCs adsorbed by the filtering system into the ecological purification system for purification. The flowerpot assembly comprises a flowerpot. The water of the water tank enters the flowerpot via a water inlet, and when the water level is higher than a water outlet, the water flows through the microorganism box and then enters the water tank, so as to form the water circulation. The air purifier is simple in structure, easy to operate and low in cost, and has a high purification efficiency for air pollutants, especially VOCs.
Abstract:
A fan coil apparatus includes an air flow path, a humidification unit, and a treatment applicator. The air flow path extends from a heating zone to a fan coil air outlet, and includes a humidification section. The humidification unit includes a humidification unit water droplet outlet and an air permeable water retaining member. The air permeable water retaining member and the humidification unit water droplet outlet are provided in the humidification section and the air permeable water retaining member is positioned downstream from the humidification unit water droplet outlet. The treatment applicator provides a disinfecting agent upstream from an air outlet of the humidification section.
Abstract:
A system for conditioning air in a building including a fan-coil unit arranged adjacent to or within an indoor space within the building and additionally configured to at least one of heat and cool the air of the indoor space, and a scrubber arranged adjacent to or within the indoor space, the scrubber configured during a scrub cycle for scrubbing of indoor air from the indoor space. The scrubber includes one or more adsorbent materials arranged therein to adsorb at least one predetermined gas from the indoor air during the scrub cycle, a source of outdoor air, and an exhaust, wherein the scrubber is configured during a purge cycle to direct a purging air flow received from the source of outdoor air over and/or through the adsorbent materials to purge at least a portion of the at least one predetermined gas adsorbed by the adsorbent materials during the scrub cycle from the adsorbent materials and thereafter exhausting the flow via the exhaust.
Abstract:
A system for conditioning air in a building including a fan-coil unit arranged adjacent to or within an indoor space within the building and additionally configured to at least one of heat and cool the air of the indoor space, and a scrubber arranged adjacent to or within the indoor space, the scrubber configured during a scrub cycle for scrubbing of indoor air from the indoor space. The scrubber includes one or more adsorbent materials arranged therein to adsorb at least one predetermined gas from the indoor air during the scrub cycle, a source of outdoor air, and an exhaust, wherein the scrubber is configured during a purge cycle to direct a purging air flow received from the source of outdoor air over and/or through the adsorbent materials to purge at least a portion of the at least one predetermined gas adsorbed by the adsorbent materials during the scrub cycle from the adsorbent materials and thereafter exhausting the flow via the exhaust.