Abstract:
Systems and methods for manufacturing a vacuum device, such as an electron emitter, that includes a foil exit window palced over and joined to a support grid. In one particular method, the vacuum chamber of an electron emitter has a thin foil forming an exit window at one end. The thin foil may be titanium or any suitable material and the foil will typically enlarge during a bonding process that attaches the foil to the support grid. In one manufacturing process, the support grid is provided with a surface that has contours, typically being smooth recessed surfaces, that the foil once enlarged can lie against as the vacuum pulls the foil against the grid.
Abstract:
An exit window for an electron beam emitter through which electrons pass in an electron beam includes a structural foil for metal to metal bonding with the electron beam emitter. The structural foil has a central opening formed therethrough. A window layer of high thermal conductivity extends over the central opening of the structural foil and provides a high thermal conductivity region through which the electrons can pass.
Abstract:
A blade for a hockey stick which can readily absorb impact from the puck, and can allow the user to feel the puck on the blade in contrast to conventional carbon fiber blades. The blade can include a blade member integrally formed of composite material having discontinuous fibers bonded within thermosetting resin. The blade member can have a blade periphery surrounding a central blade region. The central blade region can have a plurality of openings arranged in a pattern to form series of elongate criss crossing ribs that extend between and connect different sides of the blade periphery to each other. The fibers in the blade periphery can be in a generally jumbled orientation, and the fibers in the central blade region can be positioned within the ribs in a manner wherein each rib contains a plurality of fibers that substantially extend in said each rib's elongate direction.
Abstract:
An exit window for an electron beam emitter through which electrons pass in an electron beam includes a structural foil for metal to metal bonding with the electron beam emitter. The structural foil has a central opening formed therethrough. A window layer of high thermal conductivity extends over the central opening of the structural foil and provides a high thermal conductivity region through which the electrons can pass.
Abstract:
An X-ray irradiation apparatus includes an enclosure and an X-ray beam system positioned within the enclosure for directing X-ray beams into an irradiation region. The X-ray beam system has more than one X-ray beam emitter for directing the X-ray beams into the irradiation region from different directions. Each X-ray beam emitter includes a vacuum chamber having a target window and an electron generator positioned within the vacuum chamber for generating electrons that are directed at the target window for forming X-rays which pass through the target window as an X-ray beam. The target window is supported by a support plate having a series of holes therethrough which allow passage of the electrons therethrough to reach the target window.
Abstract:
A system for sterilizing air includes an air duct for flowing the air therethrough. A first electron beam generator is positioned relative to the duct for irradiating the air flowing therethrough with a first electron beam. The first electron beam for disabling biological substances within the air.
Abstract:
A filament for generating electrons for an electron beam emitter where the filament has a cross section and a length. The cross section of the filament is varied along the length for producing a desired electron generation profile.
Abstract:
An exit window for an electron beam emitter through which electrons pass in an electron beam includes an exit window foil having an interior and an exterior surface with a series of holes formed therethrough. A corrosion resistant layer having high thermal conductivity extends over the exterior surface and the holes of the exit window foil for resisting corrosion and increasing thermal conductivity. The layer extending over the holes of the exit window foil provide thinner window regions which allow easier passage of the electrons through the exit window.
Abstract:
A gas conversion system for removing carbon dioxide from gases includes a duct through which gases are circulated. The duct has a port for introducing a reaction agent into the duct to the gases. An electron beam emitter is positioned relative to the duct for directing an electron beam into the duct to cause components of the carbon dioxide and the reaction agent to react to remove carbon dioxide from the gases and release oxygen.
Abstract:
An electron beam emitter including a vacuum chamber having a width. An electron generator can be positioned within the vacuum chamber for generating electrons. An elongate nozzle can extend from the vacuum chamber along a longitudinal axis and have an exit window at a distal end of the nozzle. The nozzle can have a width that is less than the width of the vacuum chamber. The electron generator can be shaped and dimensioned, and positioned with the vacuum chamber to form and direct a narrow electron beam that enters and travels through the nozzle, and exits out the exit window.