Abstract:
A blade for a hockey stick which can readily absorb impact from the puck, and can allow the user to feel the puck on the blade in contrast to conventional carbon fiber blades. The blade can include a blade member integrally formed of composite material having discontinuous fibers bonded within thermosetting resin. The blade member can have a blade periphery surrounding a central blade region. The central blade region can have a plurality of openings arranged in a pattern to form series of elongate criss crossing ribs that extend between and connect different sides of the blade periphery to each other. The fibers in the blade periphery can be in a generally jumbled orientation, and the fibers in the central blade region can be positioned within the ribs in a manner wherein each rib contains a plurality of fibers that substantially extend in said each rib's elongate direction.
Abstract:
A blade for a hockey stick which can readily absorb impact from the puck, and can allow the user to feel the puck on the blade in contrast to conventional carbon fiber blades. The blade can include a blade member integrally formed of composite material having discontinuous fibers bonded within thermosetting resin. The blade member can have a blade periphery surrounding a central blade region. The central blade region can have a plurality of openings arranged in a pattern to form series of elongate criss crossing ribs that extend between and connect different sides of the blade periphery to each other. The fibers in the blade periphery can be in a generally jumbled orientation, and the fibers in the central blade region can be positioned within the ribs in a manner wherein each rib contains a plurality of fibers that substantially extend in said each rib's elongate direction.
Abstract:
A blade for a hockey stick which can readily absorb impact from the puck, and can allow the user to feel the puck on the blade in contrast to conventional carbon fiber blades. The blade can include a blade member integrally formed of composite material having discontinuous fibers bonded within thermosetting resin. The blade member can have a blade periphery surrounding a central blade region. The central blade region can have a plurality of openings arranged in a pattern to form series of elongate criss crossing ribs that extend between and connect different sides of the blade periphery to each other. The fibers in the blade periphery can be in a generally jumbled orientation, and the fibers in the central blade region can be positioned within the ribs in a manner wherein each rib contains a plurality of fibers that substantially extend in said each rib's elongate direction.
Abstract:
A blade for a hockey stick which can readily absorb impact from the puck, and can allow the user to feel the puck on the blade in contrast to conventional carbon fiber blades. The blade can include a blade member integrally formed of composite material having discontinuous fibers bonded within thermosetting resin. The blade member can have a blade periphery surrounding a central blade region. The central blade region can have a plurality of openings arranged in a pattern to form series of elongate criss crossing ribs that extend between and connect different sides of the blade periphery to each other. The fibers in the blade periphery can be in a generally jumbled orientation, and the fibers in the central blade region can be positioned within the ribs in a manner wherein each rib contains a plurality of fibers that substantially extend in said each rib's elongate direction.
Abstract:
A blade for a hockey stick which can readily absorb impact from the puck, and can allow the user to feel the puck on the blade in contrast to conventional carbon fiber blades. The blade can include a blade member integrally formed of composite material having discontinuous fibers bonded within thermosetting resin. The blade member can have a blade periphery surrounding a central blade region. The central blade region can have a plurality of openings arranged in a pattern to form series of elongate criss crossing ribs that extend between and connect different sides of the blade periphery to each other. The fibers in the blade periphery can be in a generally jumbled orientation, and the fibers in the central blade region can be positioned within the ribs in a manner wherein each rib contains a plurality of fibers that substantially extend in said each rib's elongate direction.
Abstract:
Systems and methods for manufacturing a vacuum device, such as an electron emitter, that includes a foil exit window palced over and joined to a support grid. In one particular method, the vacuum chamber of an electron emitter has a thin foil forming an exit window at one end. The thin foil may be titanium or any suitable material and the foil will typically enlarge during a bonding process that attaches the foil to the support grid. In one manufacturing process, the support grid is provided with a surface that has contours, typically being smooth recessed surfaces, that the foil once enlarged can lie against as the vacuum pulls the foil against the grid.
Abstract:
An exit window for an electron beam emitter through which electrons pass in an electron beam includes a structural foil for metal to metal bonding with the electron beam emitter. The structural foil has a central opening formed therethrough. A window layer of high thermal conductivity extends over the central opening of the structural foil and provides a high thermal conductivity region through which the electrons can pass.
Abstract:
An exit window for an electron beam emitter through which electrons pass in an electron beam includes a structural foil for metal to metal bonding with the electron beam emitter. The structural foil has a central opening formed therethrough. A window layer of high thermal conductivity extends over the central opening of the structural foil and provides a high thermal conductivity region through which the electrons can pass.
Abstract:
An X-ray irradiation apparatus includes an enclosure and an X-ray beam system positioned within the enclosure for directing X-ray beams into an irradiation region. The X-ray beam system has more than one X-ray beam emitter for directing the X-ray beams into the irradiation region from different directions. Each X-ray beam emitter includes a vacuum chamber having a target window and an electron generator positioned within the vacuum chamber for generating electrons that are directed at the target window for forming X-rays which pass through the target window as an X-ray beam. The target window is supported by a support plate having a series of holes therethrough which allow passage of the electrons therethrough to reach the target window.
Abstract:
A system for sterilizing air includes an air duct for flowing the air therethrough. A first electron beam generator is positioned relative to the duct for irradiating the air flowing therethrough with a first electron beam. The first electron beam for disabling biological substances within the air.