摘要:
An apparatus for producing solid carbon and water by reducing carbon oxides with a reducing agent in the presence of a catalyst includes a reactor configured to receive reaction gas comprising at least one carbon oxide, at least one reducing agent, and water. The apparatus includes at least one mixing means configured to mix the reagents to form a combined feed, a first heat exchanger configured to heat the combined feed, at least one heater configured to further heat the combined feed, and a reaction vessel configured to receive the combined feed. The reaction vessel is configured to contain a catalyst, to maintain predetermined reaction conditions of temperature and pressure, and has an output configured to deliver a tail gas to the first heat exchanger. The system also includes a product separator, a water separation unit, and a product packaging unit.
摘要:
In a method for producing a carbonaceous film in which a polymer film is wrapped around a core and is subjected to a heat treatment, material film surfaces during the carbonization step are prevented from fusion, whereby a long carbonaceous having a large area film is obtained.Fusion can be prevented by subjecting a polymer film to a heat treatment under a reduced pressure, and under a reduced pressure while allowing an inert gas to flow. The range of the pressure reduction is preferably −0.08 MPa to −0.01 kPa. It is preferred to carry out carbonization with the pressure reduced in the range of from −0.08 MPa to −0.01 kPa while allowing an inert gas to flow. In addition, the polymer film wrapped around the core is placed in an outer casing, and provided that a value derived by dividing (internal diameter of the outer casing−diameter of the core) by 2 is designated as “a” (mm), and a thickness of wrapping of the polymer film is designated as “b” (mm), a value (b/a) derived by dividing the “b” by the “a” is set to fall within the range of from 0.2 to 0.9.
摘要:
The object of the present invention is to provide a manufacturing method of carbonaceous material for a negative electrode of lithium ion capacitors, wherein the carbonaceous material is obtained from plant-derived char as a source, potassium and iron are sufficiently removed, and an average particle diameter thereof is small; and a carbonaceous material for a negative electrode of lithium ion capacitors.The object can be solved by a method for manufacturing a carbonaceous material having an average diameter of 3 to 30 μm, for a negative electrode of lithium ion capacitors comprising the steps of: (1) heating plant-derived char having an average particle diameter of 100 to 10000 μm at 500° C. to 1250° C. under an inert gas atmosphere containing a halogen compound to demineralize in a gas-phase, (2) pulverizing a carbon precursor obtained by the demineralization in a gas-phase, (3) calcining the pulverized carbon precursor at less than 1100° C. under a non-oxidizing gas atmosphere.
摘要:
A method of preparing hollow metal or metal oxide nano- or microspheres is provided. The method comprises providing a suspension comprising monodispersed polydopamine nano- or microspheres, forming a layer of metal or metal oxide on the monodispersed polydopamine nano- or microspheres, and adding an alkaline solution to the suspension to dissolve the polydopamine thereby forming the hollow metal or metal oxide nano- or microspheres.
摘要:
The present patent application discloses a novel sol-gel process to synthesize a nano-porous solid carbon material—suitable for use in electrodes in energy storage applications—from a combination of liquid reagents that undergo a polymerization reaction to form a matrix.
摘要:
Methods of preparing monodispersed polydopamine nano- or microspheres are provided. The methods comprise providing a solvent system comprising water and at least one alcohol having the formula R—OH, wherein R is selected from the group consisting of optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted C3-C6 cycloalkyl, optionally substituted C3-C6 cycloalkenyl, and optionally substituted C6-C7 aryl; adding dopamine to said solvent system to form a reaction mixture; and agitating said reaction mixture for a time period of 1 to 10 days to form said monodispersed polydopamine nano- or microspheres. Methods of preparing carbon and hollow metal or metal oxide nano- or microspheres using the polydopamine nano- or microspheres are also provided.
摘要:
A eutectic supported catalyst system is used in catalyzed chemical reactions. A metal catalyst particle is supported in a eutectic medium. The system may have a) a eutectic composition of at least two metals forming the eutectic composition; and b) metal catalyst particles, preferably of nanometer dimensions, such as from 0.5 to 50 nm. The particles are dispersed throughout the eutectic composition when the eutectic composition is solid, and the particles are dispersed or suspended throughout the eutectic composition when the eutectic composition is in liquid form. At least one metal of the eutectic may comprises lead and a metal in the metal catalyst is a different metal then the metals in the eutectic. The eutectic may be in a liquid state and the metal catalyst particles may be in an equilibrium state within the eutectic.
摘要:
A method of fabricating a carbon allotrope is disclosed. The method includes forming an intermediate carbon template from a carbon feedstock; and creating a pressure and temperature in the carbon template suitable for fabrication of the carbon allotrope from the intermediate carbon template. The pressure and temperature may be created from a shockwave resulting from collapse of a bubble formed during a bubble cavitation process.
摘要:
A two-stage reaction process includes reacting gaseous carbon dioxide with a reducing agent to form carbon monoxide and water. At least a portion of the water is condensed to form a dry tail gas. The dry tail gas, with the possible addition of a reducing agent, reacts to convert at least a portion of the carbon monoxide to solid carbon and water. Other methods include reacting a feed gas mixture to form a reaction mixture, condensing water from the reaction mixture to form a dried reaction mixture, mixing the dried reaction mixture with a recirculating gas to form a catalytic converter feed gas mixture, flowing the catalytic converter feed gas mixture through a catalytic converter to form solid carbon and a tail gas mixture containing water, and flowing the tail gas mixture through a heat exchanger.