摘要:
A method of fabricating a carbon allotrope is disclosed. The method includes forming an intermediate carbon template from a carbon feedstock; and creating a pressure and temperature in the carbon template suitable for fabrication of the carbon allotrope from the intermediate carbon template. The pressure and temperature may be created from a shockwave resulting from collapse of a bubble formed during a bubble cavitation process.
摘要:
A method of fabricating a carbon allotrope is disclosed. The method includes forming an intermediate carbon template from a carbon feedstock; and creating a pressure and temperature in the carbon template suitable for fabrication of the carbon allotrope from the intermediate carbon template. The pressure and temperature may be created from a shockwave resulting from collapse of a bubble formed during a bubble cavitation process.
摘要:
A semiconductor structure is bonded directly to a diamond substrate by Van der Waal forces. The diamond substrate is formed by polishing a surface of diamond to a first degree of smoothness; forming a material, such as diamond, BeO, GaN, MgO, or SiO2 or other oxides, over the polished surface to provide an intermediate structure; and re-polishing the material formed on the intermediate structure to a second degree of smoothness smoother than the first degree of smoothness. The diamond is bonded to the semiconductor structure, such as GaN, by providing a structure having bottom surfaces of a semiconductor on an underlying material; forming grooves through the semiconductor and into the underlying material; separating semiconductor along the grooves into a plurality of separate semiconductor structures; removing the separated semiconductor structures from the underlying material; and contacting the bottom surface of at least one of the separated semiconductor structures to the diamond substrate.
摘要:
A semiconductor structure is bonded directly to a diamond substrate by Van der Waal forces. The diamond substrate is formed by polishing a surface of diamond to a first degree of smoothness; forming a material, such as diamond, BeO, GaN, MgO, or SiO2 or other oxides, over the polished surface to provide an intermediate structure; and re-polishing the material formed on the intermediate structure to a second degree of smoothness smoother than the first degree of smoothness. The diamond is bonded to the semiconductor structure, such as GaN, by providing a structure having bottom surfaces of a semiconductor on an underlying material; forming grooves through the semiconductor and into the underlying material; separating semiconductor along the grooves into a plurality of separate semiconductor structures; removing the separated semiconductor structures from the underlying material; and contacting the bottom surface of at least one of the separated semiconductor structures to the diamond substrate.
摘要:
An apparatus includes a beta particle source configured to provide beta particles. The apparatus also includes a diamond moderator configured to convert at least some of the beta particles into lower-energy electrons. The apparatus further includes a PN junction configured to receive the electrons and to provide electrical power to a load. The diamond moderator is located between the beta particle source and the PN junction. The apparatus could also include an electron amplifier configured to bias the diamond moderator. For example, the electron amplifier could be configured to receive some of the beta particles and to generate additional electrons that bias the diamond moderator. Also, the diamond moderator can be configured to receive the beta particles having energies that are spread out over a wider range including higher energies, and the diamond moderator can be configured to provide the electrons concentrated in a narrower range at lower energies.
摘要:
An apparatus includes a beta particle source configured to provide beta particles. The apparatus also includes a diamond moderator configured to convert at least some of the beta particles into lower-energy electrons. The apparatus further includes a PN junction configured to receive the electrons and to provide electrical power to a load. The diamond moderator is located between the beta particle source and the PN junction. The apparatus could also include an electron amplifier configured to bias the diamond moderator. For example, the electron amplifier could be configured to receive some of the beta particles and to generate additional electrons that bias the diamond moderator. Also, the diamond moderator can be configured to receive the beta particles having energies that are spread out over a wider range including higher energies, and the diamond moderator can be configured to provide the electrons concentrated in a narrower range at lower energies.
摘要:
A semiconductor structure is bonded directly to a diamond substrate by Van der Waal forces. The diamond substrate is formed by polishing a surface of diamond to a first degree of smoothness; forming a material, such as diamond, BeO, GaN, MgO, or SiO2 or other oxides, over the polished surface to provide an intermediate structure; and re-polishing the material formed on the intermediate structure to a second degree of smoothness smoother than the first degree of smoothness. The diamond is bonded to the semiconductor structure, such as GaN, by providing a structure having bottom surfaces of a semiconductor on an underlying material; forming grooves through the semiconductor and into the underlying material; separating semiconductor along the grooves into a plurality of separate semiconductor structures; removing the separated semiconductor structures from the underlying material; and contacting the bottom surface of at least one of the separated semiconductor structures to the diamond substrate.