Abstract:
A method is disclosed for optimizing the gear-shifting sequence in a step-variable transmission fitted in a motor vehicle, in particular in an automated shift transmission, which has a plurality of gears, which can be engaged and disengaged by means of respective clutches, the method comprising the following steps: registering at least one of a tolerance-dependent and a wear-dependent parameter of a clutch of the step-variable transmission; and adjustment of a set-point displacement value of a gear-shifting member of the clutch, which corresponds to the parameter and which is approached in the course of a gear shift, as a function of the value of the parameter registered.
Abstract:
An actuator arrangement for a clutch of a drive train for motor vehicles. The clutch is prestressed into an opened position and can be activated electromechanically. An electric motor can be coupled to the clutch in order to activate it. A control unit actuates the electric motor. The actuator arrangement has a safety device which is connected to the electric motor parallel to the control unit. The safety device is configured, in the case of a fault state, to supply electrical power to the electric motor independently of the control unit in order to open the clutch.
Abstract:
A hydraulic circuit for a dual clutch transmission for motor vehicles comprises a first and a second clutch that can be hydraulically actuated and a first and a second pressure control valve for regulating the clutch pressure of the first and second clutches. In this circuit there is provided a single central valve, which in a first position connects the pressure control valves to the respective clutches and in a second position disengages the pressure control valves from the respective clutches.
Abstract:
A transmission configuration includes an automated dual-clutch transmission having two transmission sections with respective input shafts, respective output shafts and respective motor clutches. The motor clutches are connected, on a motor side thereof, to a drive shaft and to a respective one of the input shafts on a transmission side thereof. A drive-side speed sensor unit is disposed at the drive shaft. An input-side speed sensor configuration includes sensor wheels connected, fixed against relative rotation, to respective ones of the input shafts, and pulse sensors disposed stationary with respect to a housing and within an effective range of the respective sensor wheels. The input-side speed sensor configuration is configured to detect a speed of the input shafts and a direction of rotation of at least one of the input shafts. A method for controlling an automated dual-clutch transmission is also provided.
Abstract:
A step-by-step variable transmission has a housing, a drive input shaft device, a drive output shaft and a countershaft. A plurality of gearwheel sets are mounted on the drive input shaft and on the countershaft. The gearwheel sets can be shifted so as to establish different gear stages by means of respective shift clutches. The countershaft is connected to the drive output shaft by means of a drive output constant wheel set. The drive output shaft is rotatably mounted in the region of its opposite ends on the housing by means of two bearings. At least one of the gearwheel sets is mounted in the region in the axial direction between the two bearings of the drive output shaft.
Abstract:
A method for controlling an automated step-by-step variable transmission which has a plurality of gear stages which set up a different transmission ratio in each case. The method comprises the steps: a) detecting whether a gear stage is to be engaged, b) detecting an input actual variable which is substantially proportional to an input rotational speed of the step-by-step variable transmission, and an output actual variable which is substantially proportional to an output rotational speed of the transmission, c) checking as to whether a difference between a ratio of the input and the output actual variables and the transmission ratio which would be set up by the gear stage is smaller for a predefined timespan than a predefined tolerance range, and d) determining a fault state if the difference does not lie within the tolerance range for the predefined timespan.
Abstract:
A transmission configuration includes an automated dual-clutch transmission having two transmission sections with respective input shafts, respective output shafts and respective motor clutches. The motor clutches are connected, on a motor side thereof, to a drive shaft and to a respective one of the input shafts on a transmission side thereof. A drive-side speed sensor unit is disposed at the drive shaft. An input-side speed sensor configuration includes sensor wheels connected, fixed against relative rotation, to respective ones of the input shafts, and pulse sensors disposed stationary with respect to a housing and within an effective range of the respective sensor wheels. The input-side speed sensor configuration is configured to detect a speed of the input shafts and a direction of rotation of at least one of the input shafts. A method for controlling an automated dual-clutch transmission is also provided.
Abstract:
Fluid filter arrangement for a motor vehicle drive train. The filter arrangement comprises a filter housing, which has a fluid inlet and a fluid outlet, allowing fluid to flow in one flow direction from the fluid inlet to the fluid outlet. A filter insert is arranged in the filter housing and divides an interior of the filter housing into an inlet region connected to the fluid inlet and an outlet region connected to the fluid outlet. The filter insert has a filter medium for filtering fluid. The filter insert has a perforated plate having a plurality of holes. The holes are arranged ahead of the filter medium in the flow direction. The size of at least some of the holes is adapted so that fluid impinges upon the filter medium at an increased flow velocity.
Abstract:
A parking mechanism arrangement for a motor vehicle transmission has a housing and a shaft supported so that it can rotate in relation to the housing. A parking mechanism gear is rotationally fixed to the shaft and comprises a parking mechanism tooth system. A parking mechanism pawl is supported so that it can pivot about a pawl axis in relation to the housing and comprises a pawl tooth, which is capable of engaging in a tooth space of the parking mechanism tooth system in order to establish a locked position. An actuating mechanism comprises an actuating element, which acts upon an actuating portion of the parking mechanism pawl in order to pivot the parking mechanism pawl from a release position into the locked position. The actuating element is embodied as a cam ring, which is arranged concentrically with the shaft and which comprises a cam portion, which acts on the actuating portion in order to establish the locked position.
Abstract:
Actuator arrangement for a drive train, which has at least one friction clutch for transmitting drive torque and has a transmission. The friction clutch can be actuated by means of a hydraulic clutch cylinder, which is connected directly to a pump port of a pump driven by an electric motor in order to actuate the friction clutch, such that the friction clutch can be actuated by varying the speed of the pump. The actuator arrangement has a parking lock actuator device for actuating a parking lock arrangement of the drive train. The parking lock actuator device has at least one hydraulic parking lock cylinder, which can be connected to the pump, such that the parking lock arrangement can be actuated by varying at least one of the direction of rotation or the speed of the pump.