Abstract:
A device for bit-demultiplexing in a multicarrier MIMO communication system (e.g. precoded spatial multiplexing MIMO communication systems using adaptive OFDM), including a multicarrier MIMO transmitter and a multicarrier MIMO receiver. The multicarrier MIMO transmitter includes a demultiplexer and symbol mapper unit receiving an input bit stream and generating a plurality of symbol streams, each symbol stream being associated with a different transmission channel and including a plurality of data symbols, each data symbol being attributed to a different carrier; one or more multicarrier modulators generating at least two multicarrier modulated signals based on the symbol streams; and at least two transmit ports respectively transmitting the at least two multicarrier modulated signals, wherein a data throughput rate of each transmission channel is separately variable.
Abstract:
An OFDM encoding apparatus for encoding OFDM symbols into an OFDM signal includes: a pre-distortion unit that pre-distorts OFDM symbols into pre-distorted OFDM symbols, the OFDM symbols including payload data and each being carried on multiple OFDM subcarriers; an OFDM generator that generates an OFDM signal from the pre-distorted OFDM symbols by OFDM modulating the pre-distorted OFDM symbols; and a filter that filters the OFDM signal to obtain a filtered OFDM signal, the filter being configured to attenuate the spectrum of the OFDM signal in frequency bands outside the signal bandwidth of the OFDM signal by applying a filter transfer function to the OFDM signal. The pre-distortion unit is configured to apply a pre-distortion transfer function equal to the inverse of the filter transfer function to the OFDM symbols.
Abstract:
The present invention relates to a transmission apparatus and a corresponding transmission method for transmitting data within a multi-carrier transmission system comprising two or more transmission apparatuses that are configured to transmit the same data. To avoid destructive interferences a transmission apparatus (10) is proposed comprising a signal input (30) configured to receive multi-carrier signals (S(k)) carrying data to be transmitted, a distortion unit (32) configured to distort said multi-carrier signals (S(k)) by use of a distortion function (P(k)) including a phase parameter for differently modulating the phase of said multi-carrier signals (S(k)), wherein said distortion function (P(k)) is different from distortion functions used by other transmission apparatuses, whose coverage areas overlap with the coverage area of the present transmission apparatus, by using a phase parameter that is different from the phase parameter used by said other transmission apparatuses, and a transmission unit (34) configured to transmit said distorted multi-carrier signals as transmission signal (Tx(k)).
Abstract:
A method for transmitting signals over a power line network, wherein within the power line network at least one transmitter and at least one receiver communicate via at least two channels, each channel including a respective feeding port of at least one transmitter and the respective receiving port of the at least one transmitter and transmitter including at least two feeding ports. The method: determines a channel characteristic of each of the channels; applies a feeding port selection criterion based on the channel characteristic; and selects an excluded feeding port among the at least two feeding ports based on the feeding port selection criterion, wherein the excluded feeding port is not used during further communication. A corresponding power line communication modem can implement the method.
Abstract:
A transmitting apparatus is provided for transmitting signals in a multi carrier system, in which pilot signals and data mapped on frequency carriers are transmitted in a transmission bandwidth, wherein a part of the transmission bandwidth is not used to transmit signals. The apparatus includes a pilot signal mapper for mapping pilot signals onto selected frequency carriers according to a pilot pattern that is adapted for a channel estimation in a corresponding receiving apparatus, the pilot pattern enabling a channel estimation for frequency carriers next to the part of the transmission bandwidth that is not used to transmit signals.
Abstract:
A device for bit-demultiplexing in a multicarrier MIMO communication system (e.g. precoded spatial multiplexing MIMO communication systems using adaptive OFDM), including a multicarrier MIMO transmitter and a multicarrier MIMO receiver. The multicarrier MIMO transmitter includes a demultiplexer and symbol mapper unit receiving an input bit stream and generating a plurality of symbol streams, each symbol stream being associated with a different transmission channel and including a plurality of data symbols, each data symbol being attributed to a different carrier; one or more multicarrier modulators generating at least two multicarrier modulated signals based on the symbol streams; and at least two transmit ports respectively transmitting the at least two multicarrier modulated signals, wherein a data throughput rate of each transmission channel is separately variable.
Abstract:
A digital signal transmitter in which multiple data streams are each transmitted by modulation of a respective frequency band within one of a group of frequency channels, the frequency bands each occupying no more than a predetermined maximum bandwidth less than or equal to the channel width; comprises means for transmitting at respective frequency positions within each frequency channel, one or more instances of band information defining the frequency bands corresponding to all of the data streams carried within that frequency channel, the one or more instances being arranged so that any portion of the frequency channel equal in extent to the predetermined maximum bandwidth includes at least one instance of the band information.