Abstract:
A display device according to the present invention includes: a display unit including a plurality of pixels coupled to a plurality of scan lines; a plurality of scan driving blocks coupled to the plurality of scan lines and adapted to apply a plurality of scan signals; an electrostatic discharge (ESD) unit adapted to protect the plurality of scan driving blocks from static charges; an AC power source unit for supplying a first power source voltage of which a level is changed between a logic high level and a logic low level, to the plurality of scan driving blocks through a first power source voltage wire during a pixel test of the plurality of pixels; and a DC power source unit for supplying a second power source voltage of the logic high level to the ESD unit through a second power source voltage wire.
Abstract:
A degradation compensating pixel circuit includes: an organic light emitting diode (OLED); a driving circuit including a first capacitor and a first transistor, the first capacitor being configured to be charged in response to a data signal and a scan signal, the first transistor being configured to drive the OLED according to a first voltage between first and second terminals of the first capacitor, the first terminal of the first capacitor being configured to receive a supply voltage, the second terminal of the first capacitor being coupled to a gate terminal of the first transistor; and a degradation compensating circuit coupled to a source terminal of the first transistor and the gate terminal of the first transistor, the degradation compensating circuit being configured to change the first voltage according to a first current of the first transistor.
Abstract:
A display device and a driving method thereof are disclosed. In one aspect, the display device includes a plurality of pixels, each including a driver which generates a driving current according to an input image data signal and a light emission portion formed of an organic light-emitting diode which emits light according to the driving current and at least one dummy pixel connected to a repair line that is connected to a light emission portion of at least one first pixel among the plurality of pixels. The dummy pixel includes a dummy pixel driver having the same structure as the drivers of each of the plurality of pixels, a dummy pixel light emission portion formed of an organic light-emitting diode, and a repair driver which transmits a driving current generated in the dummy pixel driver through the repair line when a driver of the first pixel fails.
Abstract:
An organic light-emitting display apparatus includes an emission pixel in a display area and a spare pixel circuit in a repair area outside the display area. The emission pixels includes a plurality of sub emission pixels each including a driving unit for generating a driving current corresponding to input data signals and an emission device for emitting light by using the driving current. The spare pixel circuit is coupled to a repair line that is coupled to the emission device of one of the sub emission pixels. The spare pixel circuit includes a plurality of driving transistors corresponding to the plurality of sub emission pixels.
Abstract:
Provided is an organic light-emitting display apparatus and a method of repairing the same. The organic light-emitting display apparatus includes: an emission device comprising a plurality of sub-emission devices; an emission pixel circuit configured to supply a driving current to the emission device; a dummy pixel circuit configured to supply the driving current to the emission device; and a repair line coupling the emission device to the dummy pixel circuit, wherein the emission device is configured to receive the driving current from the emission pixel circuit or the dummy pixel circuit.
Abstract:
Provided are a pixel circuit and a display device having the pixel circuit. The pixel circuit includes an organic light emitting diode, a switching transistor, a storage capacitor, and a driving transistor. The switching transistor is turned off when a scan signal has a first voltage and turned on when the scan signal has a second voltage. The storage capacitor stores a data voltage when the switching transistor is turned on in response to the scan signal. The driving transistor is electrically connected with the organic light emitting diode between a high power supply voltage and a low power supply voltage to provide a driving current to the organic light emitting diode, and includes a first bottom gate electrode that is provided with the first voltage. The driving current corresponds to the data voltage stored in the storage capacitor.
Abstract:
An organic light emitting diode display includes a first transistor disposed on a substrate and including a gate electrode, an input electrode, and an output electrode, a second transistor electrically connected to a scan line, a data line, and the input electrode of the first transistor, a third transistor including a gate electrode, a first electrode electrically connected to the output electrode of the first transistor, and a second electrode electrically connected to the gate electrode of the first transistor, and an overlapping layer that overlaps the gate electrode of the third transistor in a plan view. The overlapping layer is disposed between the substrate and a semiconductor layer of the third transistor.
Abstract:
A pixel includes: an organic light emitting diode; a first transistor including a gate that is connected to a first node, wherein the first transistor is connected between a second node and a third node; a second transistor including a gate that is connected to a corresponding scan line, wherein the second transistor is connected between a data line and the second node; a storage capacitor connected between the first node and a first voltage; a third transistor including a gate that is connected to the corresponding scan line, the third transistor is connected between the first node and the third node; and a fourth transistor connected between a first end of the first transistor and a second voltage.
Abstract:
An organic light emitting display is capable of reducing variation in power transmitted to pixels to reduce or prevent non-uniformity of brightness from being generated. The organic light emitting display includes a pixel including a red sub pixel, a green sub pixel, and a blue sub pixel and first pixel power source lines for supplying a first pixel power from a first pixel power source to the red sub pixel, the green sub pixel, and the blue sub pixel, wherein the first pixel power source lines coupled to at least two different color sub pixels of the red, green and blue sub pixels have different widths. The first pixel power source lines have widths that may correspond to a voltage drop of the first pixel power source or may correspond to deterioration of the respective sub pixels to which they are coupled.
Abstract:
An organic light emitting display device includes a pixel unit and a driving unit. The pixel unit includes at least one pixel and the driving unit is configured to drive the pixel unit. The at least one pixel includes a first switching transistor, a second switching transistor, a third switching transistor, a fourth switching transistor, a first capacitor, a second capacitor, an organic light emitting diode, a third capacitor, and a driving transistor.