Abstract:
A pixel includes: an organic light emitting diode; a first transistor including a gate that is connected to a first node, wherein the first transistor is connected between a second node and a third node; a second transistor including a gate that is connected to a corresponding scan line, wherein the second transistor is connected between a data line and the second node; a storage capacitor connected between the first node and a first voltage; a third transistor including a gate that is connected to the corresponding scan line, the third transistor is connected between the first node and the third node; and a fourth transistor connected between a first end of the first transistor and a second voltage.
Abstract:
A driving circuit includes: an input terminal; an output terminal; a first transistor having a source electrode coupled to the input terminal, a drain electrode coupled to the output terminal, and a gate electrode; a second transistor having a source electrode, a drain electrode, and a gate electrode respectively coupled to the source electrode, the drain electrode, and the gate electrode of the first transistor; a first capacitor having a first electrode coupled to the input terminal and a second electrode coupled to the output terminal; and a second capacitor coupled in parallel with the first capacitor and having a first electrode coupled to the first electrode of the first capacitor and a second electrode that is floated.
Abstract:
A gate driver includes a plurality of stages respectively outputting a plurality of gate output signals. An N-th stage of the gate driver (where N is a positive integer) includes a first input part, a second input part, a pull up part, a pull down part, a holding part and a stabilizing part. The first input part transmits a first clock signal to a second node in response to a signal at a first node. The second input part transmits an input signal to the first node in response to a second clock signal. The pull up part pulls up the gate output signal in response to a signal at the second node. The pull down part pulls down the gate output signal in response to the signal at the first node. The holding part maintains the signal at the second node in response to the first clock signal. The stabilizing part stabilizes the gate output signal in response to the signal at the second node and a third clock signal.
Abstract:
An organic light emitting display device includes a substrate comprising a major surface; a display region and a peripheral region surrounding the display region when viewed in a viewing direction perpendicular to the major surface; an array of a plurality of pixels disposed in the display region; and a first power line extending from the peripheral region into the display region, the first power line being electrically connected to the array of pixels at a contact point in the display region. When viewed in the viewing direction, the first power line includes: a first extension extending from the peripheral region to the display region; and a second extension connected to the first extension; and a third extension connected to the second extension and extending from a location in the display region toward the peripheral region.
Abstract:
Provided are a pixel circuit and a display device having the pixel circuit. The pixel circuit includes an organic light emitting diode, a switching transistor, a storage capacitor, and a driving transistor. The switching transistor is turned off when a scan signal has a first voltage and turned on when the scan signal has a second voltage. The storage capacitor stores a data voltage when the switching transistor is turned on in response to the scan signal. The driving transistor is electrically connected with the organic light emitting diode between a high power supply voltage and a low power supply voltage to provide a driving current to the organic light emitting diode, and includes a first bottom gate electrode that is provided with the first voltage. The driving current corresponds to the data voltage stored in the storage capacitor.
Abstract:
A pixel includes: an organic light emitting diode; a first transistor including a gate that is connected to a first node, wherein the first transistor is connected between a second node and a third node; a second transistor including a gate that is connected to a corresponding scan line, wherein the second transistor is connected between a data line and the second node; a storage capacitor connected between the first node and a first voltage; a third transistor including a gate that is connected to the corresponding scan line, the third transistor is connected between the first node and the third node; and a fourth transistor connected between a first end of the first transistor and a second voltage.
Abstract:
An organic light-emitting diode display is disclosed. In one aspect, the display includes a display substrate including a display area and a peripheral area surrounding the display area. Scan lines are formed over the display substrate and configured to transmit a scan signal, data lines and driving voltage lines crossing the scan lines are configured to respectively provide a data signal and a driving voltage, and switching elements are electrically connected to the scan lines and data lines. Pixel electrodes are electrically connected to the switching elements, an organic emission layer is formed over the pixel electrodes, and a common electrode is formed over the organic emission layer. A common voltage line is formed substantially parallel to the data lines and configured to transmit a common voltage to the common electrode.
Abstract:
A method of forming a pattern may include: disposing a first material layer; disposing a first photoresist film including first shot regions; exposing the first shot regions to light, wherein an overlapping region between first shot regions may be overlappingly exposed to light exposures onto the first shot regions; forming a first photoresist pattern by developing the first photoresist film; forming a first pattern by etching the first material layer using the first photoresist pattern as an etching mask; disposing a second material layer on the first pattern; disposing a second photoresist film including second shot regions; exposing the second shot regions, wherein a boundary region between second shot regions may be disposed spaced apart from the overlapping region; forming a second photoresist pattern by developing the second photoresist film; and forming a second pattern by etching the second material layer using the second photoresist pattern as an etching mask.
Abstract:
A pixel capable of being driven at a low driving frequency that includes an organic light emitting diode (OLED), a first transistor for controlling an amount of current supplied from a first power supply coupled to a first electrode thereof to the OLED to correspond to a voltage applied to a first node, a second transistor coupled between a data line and a second node and turned on when a scan signal is supplied to a scan line, a third transistor coupled between the first node and the second node and turned on when a second control signal is supplied to a second control line, a first capacitor coupled between the second node and a fixed voltage source, and a second capacitor and a third capacitor serially coupled between the first node and the first power supply.
Abstract:
A pixel includes: an organic light emitting diode; a first transistor including a gate that is connected to a first node, wherein the first transistor is connected between a second node and a third node; a second transistor including a gate that is connected to a corresponding scan line, wherein the second transistor is connected between a data line and the second node; a storage capacitor connected between the first node and a first voltage; a third transistor including a gate that is connected to the corresponding scan line, the third transistor is connected between the first node and the third node; and a fourth transistor connected between a first end of the first transistor and a second voltage.