Abstract:
A display panel includes a first substrate having a display area and a peripheral area. The display area includes pixels with first output wires connected to the pixels. A first driver is connected to the first output wires and positioned in the peripheral area at a first side of the display area. The first substrate includes a notch portion having a curved edge and the display area has a first display portion and a second display portion with the notch portion therebetween. At least one of the first output wires is a first main line at the first display portion, a second main line at the second display portion, and a first connecting line that is connected to the first main line and the second main line and is at the peripheral area between the first display portion and the second display portion.
Abstract:
A display panel includes a base substrate including a pixel area and a peripheral area, a semiconductor layer disposed on a portion of the base substrate, a display element disposed in the pixel area, and a thin film transistor which controls the display element and includes an input electrode, an output electrode and a control electrode, in which the semiconductor layer includes a first portion disposed on the input electrode of the first thin film transistor, a second portion disposed on the output electrode of the first thin film transistor, and a third portion which connects the first portion and the second portion, overlaps the control electrode of the first thin film transistor, and defines a channel of the first thin film transistor.
Abstract:
A display apparatus includes a display panel on which first and second gate lines extending in a third direction between a first direction and a second direction crossing the first direction, data lines extending in the second direction, connection lines extending in a fourth direction crossing the third direction to be connected to the second gate lines, and pixels including pixel areas are disposed and a black matrix disposed in a non-pixel area surrounding each of the pixel areas. The black matrix includes a first black matrix not overlapped with the connection lines and second black matrices overlapped with the connection lines.
Abstract:
A thin film transistor includes a semiconductor layer disposed on a base substrate and including an oxide semiconductor material, a source electrode and a drain electrode, which respectively extend from opposing ends of the semiconductor layer, a plurality of low carrier concentration areas respectively disposed between the source electrode and the semiconductor layer and between the drain electrode and the semiconductor layer, a gate insulating layer disposed on the semiconductor layer, and a gate electrode disposed on the gate insulating layer.
Abstract:
A thin film transistor includes a semiconductor pattern formed on a substrate, the semiconductor pattern being formed of an oxide semiconductor and including a source area, a drain area, and an intermediate area that is formed between the source area and the drain area and includes a plurality of first areas and a second area having higher conductivity than the first areas; a first insulating pattern formed to cover at least the first areas; a second insulating film formed to face the second area, the source area and the drain area; a gate electrode formed on the semiconductor pattern and insulated from the semiconductor pattern by the first insulating pattern and the second insulating film; and source and drain electrodes insulated from the gate electrode and being in contact with the source area and the drain area.
Abstract:
A display substrate includes a gate line, a gate insulation layer, a data line, a switching element, a protection insulation layer, a gate pad portion and a data pad portion. The gate insulation layer is disposed on the gate line. The switching element is connected to the gate line and the data line. The protection insulation layer is disposed on the switching element. The gate pad portion includes a first gate pad electrode which makes contact with an end portion of the gate line through a first hole formed through the gate insulation layer, and a second gate pad electrode which makes contact with the first gate pad electrode through a second hole formed through the protection insulation layer. The data pad portion includes a data pad electrode which makes contact with an end portion of the data line through a third hole formed through the protection insulation layer.
Abstract:
A display substrate includes a gate line, a gate insulation layer, a data line, a switching element, a protection insulation layer, a gate pad portion and a data pad portion. The gate insulation layer is disposed on the gate line. The switching element is connected to the gate line and the data line. The protection insulation layer is disposed on the switching element. The gate pad portion includes a first gate pad electrode which makes contact with an end portion of the gate line through a first hole formed through the gate insulation layer, and a second gate pad electrode which makes contact with the first gate pad electrode through a second hole formed through the protection insulation layer. The data pad portion includes a data pad electrode which makes contact with an end portion of the data line through a third hole formed through the protection insulation layer.