Abstract:
Methods and devices are disclosed for implementing opportunistic mobile receive diversity (“OMRD”) on a multi-SIM wireless device. The wireless device may receive a request from a protocol stack associated with the first SIM to utilize the second RF resource for receive diversity, and determine whether a protocol stack associated with the second SIM currently has a lower priority than the protocol stack associated with the first SIM. Upon determining that the protocol stack associated with the second SIM currently has a lower priority than the protocol stack associated with the first SIM, the wireless device may grant control of the second RF resource to the protocol stack associated with the first SIM. Granting control may provide, to the protocol stack associated with the first SIM, a capability to enable and disable receive diversity using the first and second RF resources.
Abstract:
Aspects of the present disclosure provide wireless communication devices and methods configured to operate with multiple active connections. A user equipment establishes a first active connection associated with a first subscription. The user equipment also establishes a second active connection, simultaneous to the first active connection, associated with a second subscription. The user equipment provides modem information corresponding to connection qualities of the first active connection and second active connection, to an operating system of the user equipment. Furthermore, the user equipment mitigates contention between the first active connection and second active connection by degrading at least one of the first active connection or second active connection in accordance with a decision given by the operating system based on the modem information.
Abstract:
A method for performing mobile receive diversity may include: enabling a first receive chain associated with a first radio access technology (RAT) to receive one or more signals from a second RAT; receiving second RAT signals on a second receive chain; enabling receive diversity on a modem associated with a second receive chain; generating, by a diversity receiver, a receive diversity signal based on the one or more second RAT signals received by the first receive chain during periods of time the first receive chain does not receive a signal from the first RAT; and outputting the generated receive diversity signal to a decoder for the second RAT.
Abstract:
Aspects of the present disclosure provide a method of performing discontinuous reception (DRX) and long timescale discontinuous transmission (LDTX) in a wireless communications system. An access terminal (AT) includes a communications interface configured to receive a forward link (FL) transmission from a network, wherein the FL transmission includes a plurality of frames each including at least two half slots. The AT further includes a computer-readable medium with instructions and a processing circuit coupled to the communications interface and the computer-readable medium. The AT is configured to enable a LDTX mode including an LDTX on period and an LDTX off period. In the LDTX off period, the AT autonomously enables a DRX mode in at least a portion of a half slot based on data contained in the half slot.
Abstract:
Aspects of the present disclosure provides an apparatus configured to perform discontinuous reception (DRX) in a wireless communications system. The apparatus is configured to receive a forward link (FL) transmission from a network. The FL transmission includes one or more frames, wherein each of the frames includes a plurality of power control groups (PCGs). The apparatus determines a FL setpoint. If the FL setpoint is less than a maximum setpoint value by an amount greater than a predetermined value, the apparatus autonomously enables DRX to receive a predetermined subset of PCGs among the plurality of PCGs.
Abstract:
Methods and apparatus for of tracking network system timing are provided. In one aspect, a method for wireless communication comprises determining a probability of passing an accessibility test for accessing a network. The method further includes comparing the determined probability to a threshold. The method further includes selectively performing a backoff procedure for a period of time based on the comparison.
Abstract:
Aspects of the present disclosure can improve the round trip time delay of reverse link transmissions of an access terminal. The access terminal determines a first traffic-to-pilot power (T2P) ratio after a session negotiation. Then, the access terminal determines a second T2P ratio of a first subpacket of a physical layer packet, wherein the second T2P ratio may be boosted relative to the first T2P ratio. The access terminal transmits the at least one subpacket at the second T2P ratio utilizing a reverse link. Therefore, the physical layer packet may be early terminated, and round trip time delay of the reverse link may be reduced.
Abstract:
A method for performing mobile receive diversity may include: enabling a first receive chain associated with a first radio access technology (RAT) to receive one or more signals from a second RAT; receiving second RAT signals on a second receive chain; enabling receive diversity on a modem associated with a second receive chain; generating, by a diversity receiver, a receive diversity signal based on the one or more second RAT signals received by the first receive chain during periods of time the first receive chain does not receive a signal from the first RAT; and outputting the generated receive diversity signal to a decoder for the second RAT.
Abstract:
Methods and apparatus for selecting one or more suitable antennas for use during power-up/initial acquisition and out of service modes are disclosed. In some examples, initial system acquisition may be performed for a particular receive circuit utilizing a selected one of a first antenna or a second antenna, based on a channel characteristic, such as an automatic gain control (AGC) value corresponding to a received signal energy utilizing either of the antennas. In another example, initial system acquisition utilizing either a receive diversity determination algorithm or an antenna switching determination algorithm may be performed based on a channel characteristic, such as an AGC value corresponding to a received signal energy utilizing one of the antennas coupled to one of the receive circuits.
Abstract:
This disclosure provides systems, methods, and apparatus for antenna switching for simultaneous communication. One apparatus embodiment includes a plurality of antennas including a first antenna, a second antenna, and a third antenna. The wireless communication apparatus further includes a plurality of receive circuits including a first receive circuit, at least two of the plurality of receive circuits each configured to simultaneously receive, with respect to the other, wireless communications from a different one of at least two networks relating to different radio access technologies. The wireless communication apparatus further includes a controller configured to selectively switch the first receive circuit from receiving wireless communications via the first antenna to receive wireless communications via the second antenna based on one or more performance characteristics of at least one of the first antenna and the second antenna. Other aspects, embodiments, and features are also claimed and described.