Abstract:
In one embodiment, a method for a moving picture coding system to derive at least one motion vector of a bi-predictive block in a current picture from a motion vector of a first block in a first picture includes selecting, by the moving picture coding system, a list 1 motion vector of the first block in the first picture as a motion vector for deriving list 0 and list 1 motion vectors of the bi-predictive block if the first block only has the list 1 motion vector, the first picture being permitted to be located temporally before the current picture and permitted to be located temporally after the current picture, scaling the selected motion vector and deriving the list 0 and list 1 motion vectors of the bi-predictive block by applying a bit operation to the scaled motion vector, the bit operation including 8 bits right shift.
Abstract:
In one embodiment, the method includes determining, by a moving picture coding system, first and second reference pictures; obtaining a type of the first reference picture; and determining motion vectors of the bi-predictive image block based on the type of the first reference picture. The type is one of a long-term type and a short-term type, and characterizes a temporal distance of the first reference picture with respect to the bi-predictive block. The motion vectors of the bi-predictive image block are determined according to a first set of expressions if the first reference picture is of the short-term type and according to a second set of expressions if the first reference picture is of the long-term type. The bi-predictive image block is decoded by using the first reference picture and the second reference picture based on the determined motion vectors.
Abstract:
In one embodiment, the method includes determining motion vectors of the bi-predictive image block based on a type of the first reference picture. The type is one of a long-term type and a short-term type, and the type characterizes a temporal distance of the first reference picture with respect to the bi-predictive block. The motion vectors of the bi-predictive image block are determined according to a first set of expressions if the first reference picture is of the short-term type, and according to a second set of expressions if the first reference picture is of the long-term type. The second set of expressions is different than the first set of expressions. The method further includes decoding the bi-predictive image block based on the determined motion vectors.
Abstract:
The present invention includes determining a motion vector candidate set of a current block, obtaining motion vector indication information of a current block from a video signal, extracting a motion vector candidate corresponding to a motion vector indication information from a motion vector candidate set, determining a predicted motion vector of a current block based on the extracted motion vector candidate, and performing motion compensation on a current block based on a predicted motion vector.
Abstract:
The present invention includes determining a motion vector candidate set of a current block, deriving a predicted motion vector of a current block from a motion vector candidate set, deriving a motion vector of a current block based on a predicted motion vector and a motion vector difference of a current block, and performing motion compensation on a current block based on a motion vector.
Abstract:
In one embodiment, a method of predicting a motion vector for a current block in a current picture by a moving picture decoding device includes obtaining, by the moving picture decoding device, a direction of a reference picture of the current picture, based on comparison of a display order of the reference picture and a display order of the current picture, obtaining, by the moving picture decoding device, at least three motion vectors for at least three other blocks than the current block based on the direction of the reference picture and predicting, by the moving picture decoding device, a motion vector for the current block by using a median operation of the at least three motion vectors.
Abstract:
In one embodiment, the method includes selecting a list 0 motion vector of the first block in the first picture as the motion vector for deriving list 0 and list 1 motion vectors of the bi-predictive block if the first block has both a list 1 motion vector and the list 0 motion vector, the first picture being permitted to be located temporally before the current picture and permitted to be located temporally after the current picture, deriving a first temporal distance between the current picture and a reference picture of the current picture, deriving a second temporal distance between the first reference picture and a reference picture of the first picture, scaling the selected motion vector based on the first and the second temporal distances and deriving at least one motion vector of the bi-predictive block by applying a bit operation to the scaled motion vector.
Abstract:
In one embodiment, the apparatus includes a decoder. The decoder is configured to obtain first and second motion vectors of a block other than the current block. The other block neighbors the current block at one of a left, top and top right position. The decoder is configured to determine first and second motion vectors of the current block using the first and second motion vectors of the other block such that the first motion vector of the current block has a same direction as the first motion vector of the other block and the second motion vector of the current block has a same direction as the second motion vector of the other block.
Abstract:
A method and apparatus for decoding a video signal are disclosed. A method for decoding a video signal includes obtaining block type information of a current block, confirming a prediction mode of the current block based on the block type information, obtaining, if the prediction mode of the current block is an intra prediction mode according to the prediction mode, at least one correlation parameter information using at least one neighboring pixel of the current block, obtaining an intra prediction value of the current block using the correlation parameter information, and reconstructing the current block using the intra prediction value of the current block.
Abstract:
The present invention includes obtaining block type identification information on a partition of the current macroblock when the current macroblock is intra-mixed specifying a bock type of the current macroblock based on the block type identification information, obtaining an intra prediction mode of the current macroblock according to the block type of the partition of the current macroblock, and predicting the current macroblock using the intra prediction mode and a pixel value of a neighboring block.