Abstract:
In a particle-beam projection processing apparatus for irradiating a target by a beam of energetic electrically charged particles, including an illumination system, a pattern definition system for positioning an aperture arrangement composed of apertures transparent to the energetic particles in the path of the illuminating beam, and a projection system to project the beam onto a target, there is provided at least one plate electrode device, which has openings corresponding to the apertures of the pattern definition system and including a composite electrode composed of a number of partial electrodes being arranged non-overlapping and adjoining to each other, the total lateral dimensions of the composite electrode covering the aperture arrangement of the pattern definition system. The partial electrodes can be applied different electrostatic potentials.
Abstract:
In a particle-beam projection processing apparatus a target (41) is irradiated by means of a beam (pb) of energetic electrically charged particles, using a projection system (103) to image a pattern presented in a pattern definition means (102) onto the target (41) held at position by means of a target stage; no elements—other than the target itself—obstruct the path of the beam after the optical elements of the projection system. In order to reduce contaminations from the target space into the projection system, a protective diaphragm (15) is provided between the projection system and the target stage, having a central aperture surrounding the path of the patterned beam, wherein at least the portions of the diaphragm defining the central aperture are located within a field-free space after the projection system (103).
Abstract:
For irradiating a target with a beam of energetic electrically charged particles comprising a plurality of beamlets, the target is exposed in a sequence of exposure stripes composed image pixels. These stripes (s1, s2) are, at their boundaries to adjacent stripes, provided with overlap margins (m12, m21) which are mutually overlapped, so nominal positions of image pixels in the overlap margin (m21) overlap, or substantially coincide, with image pixels in the corresponding overlap margin (m12). During the exposure of an overlap margin (m21), a first subset (n1) of image pixels in said overlap margin are exposed while those of a second subset (n2), possibly a complementary subset with respect to a desired pattern, are not exposed; contrariwise, during the exposure of the corresponding overlap margin (m12), image pixels corresponding to image pixels in the first subset are not exposed, but those corresponding to image pixels in the second subset are.
Abstract:
In a particle-beam projection processing apparatus for irradiating a target by a beam of energetic electrically charged particles, including an illumination system, a pattern definition system for positioning an aperture arrangement composed of apertures transparent to the energetic particles in the path of the illuminating beam, and a projection system to project the beam onto a target, there is provided at least one plate electrode device, which has openings corresponding to the apertures of the pattern definition system and including a composite electrode composed of a number of partial electrodes being arranged non-overlapping and adjoining to each other, the total lateral dimensions of the composite electrode covering the aperture arrangement of the pattern definition system. The partial electrodes can be applied different electrostatic potentials.
Abstract:
The invention relates to a method for forming a pattern on a substrate surface of a target by means of a beam of electrically charged particles in a number of exposure steps, where the beam is split into a patterned beam and there is a relative motion between the substrate and the pattern definition means. This results in an effective overall motion of the patterned particle beam over the substrate surface and exposition of image elements on the substrate surface in each exposure step, wherein the image elements on the target are exposed to the beamlets multiply, namely several times during a number of exposure steps according to a specific sequence. The sequence of exposure steps of the image elements is arranged in a non-linear manner according to a specific rule from one exposure step to the subsequent exposure step in order to reduce the current variations in the optical column of the multi-beam exposure apparatus during the exposure of the pattern.
Abstract:
A multi-beam pattern definition device (102) for use in a particle-beam processing or inspection apparatus is configured to be irradiated with a beam (lp,bp) of electrically charged particles so as to form a number of beamlets to be imaged to a target. An aperture array means (202) comprises at least two sets of apertures (221, 222) for defining respective beamlets (b1-b5), wherein the sets of apertures comprise a plurality of apertures arranged in interlacing arrangements and the apertures of different sets are offset to each other by a common displacement vector (d12). An opening array means (201) has a plurality of openings (210) configured for the passage of a subset of beamlets corresponding to one of the sets of apertures but lacking openings (being opaque to the beam) at locations corresponding to the other sets of apertures. A positioning means shifts the aperture array means relative to the opening array means in order to selectively bring one of the sets of apertures into alignment with the openings in the opening array means.
Abstract:
The invention relates to a multi-beam deflector array means for use in a particle-beam exposure apparatus employing a beam of charged particles, said multi-beam deflector array means having an overall plate-like shape with a membrane region and a buried CMOS-layer, said membrane region comprising a first side facing towards the incoming beam of particles and a second side opposite to the first side, an array of apertures, each aperture allowing passage of a corresponding beam element formed out of said beam of particles, and an array of electrodes, each aperture being associated with at least one of said electrodes and the electrodes being controlled via said CMOS layer, wherein the electrodes are pillared, standing proud of the main body of the multi-beam deflector array means, the electrodes being connected to one side of the main body of the multi-beam deflector array means by means of bonding connections.
Abstract:
In a particle multi-beam structuring apparatus for forming a pattern on a target's surface using a beam of electrically charged particles, during exposure steps the particle beam is produced, directed through a pattern definition means producing a patterned particle beam composed of multiple beamlets, and projected by an optical column including a controllable deflection means onto the target surface to form, at a nominal location on the target, a beam image comprising the image of defining structures in the pattern definition means. The beam image's nominal location relative to the target is changed between exposure steps. The actual location of the beam image is varied within each exposure step around the nominal location, through a set of locations realizing a distribution of locations within the image plane around a mean location coinciding with the nominal location, thus introducing an additional blur which is homogenous over the entire beam image.
Abstract:
An improved aperture arrangement in a device for defining a pattern on a target, for use in a particle-beam exposure apparatus, by being irradiated with a beam of electrically charged particles and allowing passage of the beam only through a plurality of apertures. The device includes an aperture array having a plurality of apertures of identical shape defining the shape and relative position of beamlets permeating the apertures. A blanking device switches off the passage of selected beamlets permeating the apertures and defined by them. The apertures are arranged on the aperture array according to an arrangement deviating from a regular arrangement by small deviations, adjusting for distortions caused by the particle-beam exposure apparatus, and the size of the apertures of the aperture array differs across the aperture array in order to allow for an adjustment of the current radiated on the target through the apertures and the corresponding openings.
Abstract:
A multi-beam pattern definition device for use in a particle-beam processing or inspection apparatus, which is set up to be irradiated with a beam of electrically charged particles and allow passage of the beam through a plurality of apertures thus forming beamlets, which are imaged onto a target. A deflection array has a plurality of electrostatic deflector electrodes for each beamlet. Each deflector electrode can be applied an electrostatic potential individually. Counter electrodes are electrically connected to a counter potential independently of the deflection array through a counter-electrode array. The counter potentials may be a common ground potential or individual potentials in order to improve system reliability. In conjunction with an associated counter electrode, each deflector electrode deflects its beamlet sufficiently to deflect the beamlet off its nominal path when applied an activating voltage against the respective counter electrode.