Abstract:
Aspects of the embodiments are directed to receiving an address resolution protocol (ARP) request message from a requesting virtual machine, the ARP request message comprising a request for a destination address for a destination virtual machine, wherein the destination address comprises one or both of a destination hardware address or a destination media access control address; augmenting the ARP request message with a network service header (NSH), the NSH identifying an ARP service function; and forwarding the augmented ARP request to the ARP service function.
Abstract:
In one embodiment, a device in a network receives a packet that includes one or more forwarding labels and a service function chaining (SFC) header. The device removes the one or more forwarding labels from the packet. The device inserts an indication of the one or more forwarding labels into metadata of the SFC header. The device forwards the packet with the inserted indication of the one or more forwarding labels to a service function.
Abstract:
In one embodiment, an ingress router sends a multipath information query across a computer network toward an egress router, and builds an entropy table based on received query responses. The entropy table maps the egress router to one or more available paths to the egress router, and associated entropy information for each respective available path of the one or more available paths. The ingress router may then forward traffic to the egress router using the entropy table to load share the traffic across the one or more available paths using the associated entropy information for each respective available path. In response to detecting a failure of a particular path of the one or more available paths, however, the ingress router then removes the particular path from the entropy table, thereby ceasing forwarding of traffic over the particular path.
Abstract:
A method is provided in one example and includes communicating a first request message to a first network element functioning as a point of local repair for a backup label switched path. The first request message includes a first network address having a predetermined value and an indication of a forwarding equivalence class associated with the backup label switched path. The method further includes receiving a first reply message from the first network element. The first reply message includes at least one backup path parameter associated with the backup label switched path.
Abstract:
In one embodiment, an ingress router sends a multipath information query across a computer network toward an egress router, and builds an entropy table based on received query responses. The entropy table maps the egress router to one or more available paths to the egress router, and associated entropy information for each respective available path of the one or more available paths. The ingress router may then forward traffic to the egress router using the entropy table to load share the traffic across the one or more available paths using the associated entropy information for each respective available path. In response to detecting a failure of a particular path of the one or more available paths, however, the ingress router then removes the particular path from the entropy table, thereby ceasing forwarding of traffic over the particular path.
Abstract:
In one embodiment, a provider edge (PE) device in a computer network determines an IPv4 address and link-layer address for each adjacent customer premise equipment (CPE) device, and assigns each CPE device a unique IPv6 address. The PE device stores a key-pair mapping between the unique IPv6 address and combined IPv4 and link-layer address for each adjacent CPE, the mapping bound by a CPE session context, and uses the CPE session context to convert between IPv4 and IPv6 for all network traffic to and from a particular CPE device.
Abstract:
In one example, an Edge Quadrature Amplitude Modulation (EQAM) communicates EQAM information to a Modular Cable Modem Termination System (M-CMTS) core using a routing protocol that is configured on a packet switched network coupling the EQAM to the M-CMTS core. The EQAM generates a routing message according to the routing protocol and inserts EQAM information, such as a description of a modulated channel extending from the EQAM, the service-group information, etc., into the routing message. The EQAM then floods the EQAM information over at least portions of a routing domain by transmitting the routing message to an adjacent intermediary device.
Abstract:
In one embodiment, a merge process can determine a primary tree among nodes in a communication network, determine a backup tree for a protected segment of the primary tree, the backup tree having at least a portion of overlap with the primary tree, and stitch the backup tree to the primary tree for each node of the portion of overlap such that when a message is transmitted for a group according to the backup tree, each node of the portion of overlap receives a single instance of the message of the group.
Abstract:
In one embodiment, a method comprises: receiving, by a process, an executed function flow of a daisy chained serverless function-as-a-service (FaaS) function, the executed function flow having been injected with a particular trace identifier in response to an initial event trigger and span identifiers having been injected by each service that was executed; generating, by the process, a serverless flow graph associated with the particular trace identifier based on linking a path of serverless functions according to correlation of the span identifiers between the serverless functions; performing, by the process, a trace-based analysis of the serverless flow graph through comparison to a baseline of expectation; detecting, by the process, one or more anomalies in the serverless flow graph according to the trace-based analysis; and mitigating, by the process, the one or more anomalies in the serverless flow graph.
Abstract:
The present technology is directed to a system and method for automatic triggering of relevant code segments corresponding to a sequence of code segments or function codes having a preferred execution order. The automatic triggering action is based on the snooping of a response generated from an execution of a previous code segment. Information with respect to the next code segment in the preferred execution order may be obtained by directing a network proxy, such as Envoy to snoop the Uniform Resource Identifier (URI) field of a response packet being forwarded to a client entity. In this way, a network proxy may preemptively spawn and instantiate the following function codes (pointed to by the snooped Uniform Resource Identifier) prior to receiving the corresponding client request. As such, by the time a client request for the subsequent function code is received the code ready for execution.