Abstract:
The present disclosure discloses a quantum dot display substrate and a manufacturing method thereof, and a quantum dot display device. The quantum dot display substrate comprises black matrix patterns, quantum dot patterns surrounded by the quantum dot patterns, a first base substrate, and a first optical layer and a second optical layer both arranged on a side of the first base substrate, and the first optical layer is arranged on a side of the second optical layer away from the first base substrate; the first optical layer is configured to collimate incident light to generate collimated light and transmit the collimated light to the second optical layer; the second optical layer is configured to adjust an outgoing direction of the collimated light to generate outgoing light, and make the outgoing light irradiate onto the black matrix patterns.
Abstract:
The embodiments of the present disclosure provide an array substrate. The array substrate includes a plurality of pixel groups arranged along a column direction. Each of the plurality of pixel groups includes a plurality of sub-pixel rows. Each sub-pixel row includes a plurality of sub-pixels, a first shelter or a second shelter is arranged between two adjacent sub-pixels, and the first shelter and the second shelter are arranged alternately. The first shelter has a first width, and the second shelter has a second width. For each pixel group, the first shelters on at least one of the sub-pixel rows are aligned with the second shelters on at least one of other sub-pixel rows.
Abstract:
A display device and a driving method thereof are provided. The driving method includes supplying a first voltage Vp1 to a sub-pixel of the display device through data lines in a first stage of a control period for displaying an image. A time for displaying the image includes a plurality of control periods, and the control period includes the first stage and at least a second stage following the first stage. The driving method also includes supplying a second voltage Vp2 to the sub-pixel through the data lines in the second stage. A gate scanning frequency of the first stage is F1 and a gate scanning frequency of the second stage is F2. When the first stage ends, the sub-pixel has a pixel voltage Vp3, F1 |Vp3|.
Abstract:
Disclosed are a display device and a manufacturing method thereof. The display device includes a display panel and a backlight module, wherein the display panel includes a first display substrate, the backlight module includes a light guide plate and a plurality of optical films, the light guide plate and the first display substrate are subjected to assembling and aligning, and the optical films are packaged between the light guide plate and the first display substrate. The light guide plate and the first display substrate of the display device are packaged together, and the optical films are packaged therebetween, the optical films are laminated to be firmly fixed together to prevent the optical films from being scratched, so no protection layer needs to be arranged in the backlight module, in this way, the thickness of the backlight module is decreased, and the thickness of the display device is decreased beneficially.
Abstract:
The present invention discloses a touch screen panel and a method for manufacturing the same, and a display device. The method comprises: forming patterns of a bridging layer and a shielding layer on a substrate by one patterning process; then forming a pattern of an insulating layer on the shielding layer; and forming a pattern of a touch electrode layer on the insulating layer. In the embodiments of the invention, the patterning of the bridging layer and the shielding layer is accomplished simultaneously in one patterning process, thereby the number of patterning times during the manufacture process can be reduced, the manufacture efficiency of the touch screen panel can be improved, and the production cost can be lowered.
Abstract:
A display panel and a display device are provided. The display panel has a touch side and includes an array substrate and an opposite substrate arranged opposite to each other. The array substrate includes an image sensor array including a plurality of image sensors each including a photosensitive element configured to receive light reflected by a texture touched on the touch side for texture acquisition; the opposite substrate includes a light shielding layer including a plurality of first openings arranged in an array, and the plurality of first openings are in one-to-one correspondence with and partially overlap with the photosensitive elements of the plurality of image sensors in a direction perpendicular to a panel surface of the display panel.
Abstract:
The present disclosure provides a gate driving circuit, a method of driving a gate driving circuit, and a display panel. The gate driving circuit includes a plurality of driving units connected in cascade. Each driving unit includes: N shift register units; and a mode control circuit connected to the N shift register units, wherein the mode control circuit is configured to receive a control signal for the driving unit, and connect the N shift register units in one of a plurality of resolution modes under the control of the control signal.
Abstract:
Embodiments of the present disclosure disclose a peep preventing device. The peep preventing device includes first electrodes and a transparent insulating body on a transparent substrate. The insulating body has recesses, the first electrodes are located in the recesses, respectively, and an area of a section, taken along a plane parallel to the transparent substrate, of each recess gradually reduces in a direction away from the transparent substrate. The peep preventing device further includes transparent second electrodes each of which includes a second electrode sidewall portion covering a sidewall of one of the recesses. Closed spaces are defined between the insulating body and the second electrodes and the transparent substrate, and electrophoretic liquids are contained in the closed spaces, respectively, and contain reflective charged particles adapted to adhere to the second electrodes when a first electric field is applied between the first electrodes and the second electrodes.
Abstract:
A display panel and a method for manufacturing a display device are provided. The display panel includes an array substrate, a color film substrate assembled with the array substrate, and liquid crystal molecules sealed between the array substrate and the color film substrate. The array substrate comprises a pixel electrode and a common electrode, orthographic projections of the pixel electrode and the common electrode on the base substrate of the array substrate have an overlapping region, and the liquid crystal molecules have an azimuth angle of 90 degree. As a result, the display panel can have a faster response speed and is applicable to scenarios that require fast and frequent image switching.
Abstract:
An array substrate includes a first base substrate, and gate lines and data lines arranged on the first base substrate. The gate lines and the data lines crosswise define pixel regions, wherein the pixel regions include light transmission areas one-to-one. The array substrate further includes a first raised structure arranged between a main spacer initial contact area and one of the light transmission areas, wherein the first raised structure is configured to provide a blocking function to a movement of a main spacer.