Abstract:
A method of manufacturing a ceramic includes forming a film which includes a complex oxide material having an oxygen octahedral structure and a paraelectric material having a catalytic effect for the complex oxide material in a mixed state, and performing a heat treatment to the film, wherein the paraelectric material is one of a layered catalytic substance which includes Si in the constituent elements and a layered catalytic substance which includes Si and Ge in the constituent elements. The heat treatment includes sintering and post-annealing. At least the post-annealing is performed in a pressurized atmosphere including at least one of oxygen and ozone. A ceramic is a complex oxide having an oxygen octahedral structure, and has Si and Ge in the oxygen octahedral structure.
Abstract:
A communication system includes: a transmission device; and a reception device, wherein the transmission device includes an encryption section that encrypts a plaintext to be transmitted to the reception device with a first encryption key, and a transmission section that transmits the encrypted plaintext to the reception device; and the reception device includes a FeRAM that stores a second encryption key to pair with the first encryption key, wherein, upon reading out the second encryption key from the FeRAM, the second encryption key is erased from the FeRAM, a reception section that receives the encrypted plaintext from the transmission device, and a decoding section that decodes the received plaintext encrypted with the first encryption key with the second encryption key that is supposed to be stored in the FeRAM.
Abstract:
A ferroelectric film wherein 5 to 40 mol % in total of at least one of Nb, V, and W is included in the B site of a Pb(Zr,Ti)O3 ferroelectric which includes at least four-fold coordinated Si4+ or Ge4+ in the A site ion of a ferroelectric perovskite material in an amount of 1% or more. This enables to significantly improve reliability of the ferroelectric film.
Abstract:
A method of manufacturing a ceramic includes forming a film which includes a complex oxide material having an oxygen octahedral structure and a paraelectric material having a catalytic effect for the complex oxide material in a mixed state, and performing a heat treatment to the film, wherein the paraelectric material is one of a layered catalytic substance which includes Si in the constituent elements and a layered catalytic substance which includes Si and Ge in the constituent elements. The heat treatment includes sintering and post-annealing. At least the post-annealing is performed in a pressurized atmosphere including at least one of oxygen and ozone. A ceramic is a complex oxide having an oxygen octahedral structure, and has Si and Ge in the oxygen octahedral structure.
Abstract:
The present invention relates to a method of manufacturing an electrode which includes forming an electrode over a substrate. Initial crystal nuclei of an electrode material are formed over the substrate in an island pattern, and then grown layers of the electrode material are formed by causing the initial crystal nuclei to be grown. A substrate temperature when forming the initial crystal nuclei is higher than a substrate temperature when forming the grown layers.
Abstract:
A method of manufacturing a ceramic coating material which includes stirring a material including a complex oxide in the presence of a catalyst containing platinum group elements. The material is a sol-gel material which includes at least one of a hydrolysate and a polycondensate of the complex oxide.
Abstract:
A method of forming a ferroelectric film including a complex oxide of PZT family on a metal film formed of Pt by using a metalorganic chemical vapor deposition method. At first, supply of Pb is started to form an alloy film of Pb and Pt on the metal film. Supply of Ti is then started to form an initial crystal nuclei of PbTiO3 on the alloy film. Then, supply of Zr is started to form a crystal grown layer of the complex oxide of PZT family on the initial crystal nuclei.
Abstract translation:通过使用金属有机化学气相沉积法在由Pt形成的金属膜上形成包含PZT族的复合氧化物的铁电体膜的方法。 首先,开始供给Pb,以在金属膜上形成Pb和Pt的合金膜。 然后开始供应Ti,以在合金膜上形成PbTiO 3 N 3的初始晶核。 然后,开始供给Zr,在初始晶核上形成PZT族的复合氧化物的结晶生长层。
Abstract:
A ferroelectric thin film formed of a highly oriented polycrystal in which 180° domains and 90° domains arrange at a constant angle to an applied electric field direction in a thin film plane and reversely rotate in a predetermined electric field.
Abstract:
The present invention relates to a ferroelectric memory having a matrix-type memory cell array which has a superior degree of integration, in which the angularity of the ferroelectric layer's hysteresis curve is improved, the production yield is increased and costs are reduced.A ferroelectric memory having improved angularity in the hysteresis curve, and superior memory characteristics, production yield and costs is realized as follows. Namely, a peripheral circuit chip and a memory cell array chip are engaged onto an inexpensive assembly base 300 such as glass or plastic. In memory cell array chip 200, a ferroelectric layer is made to undergo epitaxial growth on to a Si single crystal via a buffer layer and first signal electrode. As a result, a ferroelectric memory can be realized which has improved angularity in the hysteresis curve and superior memory characteristics, production yield, and cost.
Abstract:
[Object] To provide an MOCVD apparatus and a MOCVD method which can deposit a thin film having satisfactory properties by preventing temperature decrease of a source gas. [Solving Means] An MOCVD apparatus according to the present invention is an apparatus for supplying a source gas as a mixture of an MO source gas with an oxidizing gas to a substrate 13 to thereby form a film. The MOCVD apparatus includes a substrate holder 14 for holding the substrate 13; a deposition chamber for housing the substrate holder; a supply mechanism for supplying the source gas to a surface of the substrate; and a heating device for heating the substrate 13 held by the substrate holder. The deposition chamber includes a substrate housing unit for housing the substrate holder holding the substrate, and a passage housing unit being connected to the substrate housing unit and constituting a passage for supplying the source gas to the substrate. The passage has a cross-sectional area smaller than the area of a deposition plane of the substrate 13 when the passage housing unit is cut in parallel with the deposition plane of the substrate 13.