Abstract:
Improved means and method for measuring film thickness by rapidly forming and portraying optical interference fringe spectra and interpreting the same directly in terms of film thickness. An internal computer senses movement of a wavelength reference member and causes programmed indices to be displayed along with the interference fringe waveform. A single manual control, with the aid of an improved scanning and display method which balances out time lags, allows the indices to be coordinated with the fringe waveform. An automatic thickness readout device cooperates with the manual control.
Abstract:
A spectral feature selection apparatus includes a dispersive optical element arranged to interact with a pulsed light beam; three or more refractive optical elements arranged in a path of the pulsed light beam between the dispersive optical element and a pulsed optical source; and one or more actuation systems, each actuation system associated with a refractive optical element and configured to rotate the associated refractive optical element to thereby adjust a spectral feature of the pulsed light beam. At least one of the actuation systems is a rapid actuation system that includes a rapid actuator configured to rotate its associated refractive optical element about a rotation axis. The rapid actuator includes a rotary stepper motor having a rotation shaft that rotates about a shaft axis that is parallel with the rotation axis of the associated refractive optical element.
Abstract:
An optical filter includes a variable wavelength interference filter including a pair of reflection films and having a plurality of transmission peak wavelengths according to the dimension of the gap between the pair of reflection films and a fixed wavelength filter disposed so as to face the variable wavelength interference filter and having a plurality of filter regions different from one another in transmission wavelength segment. The plurality of transmission peak wavelengths of the variable wavelength interference filter correspond to the transmission wavelength segments of the plurality of filter regions, respectively. The plurality of transmission peak wavelengths of the variable wavelength interference filter each change within the corresponding transmission wavelength segment of the plurality of filter regions in accordance with a change in the gap dimension.
Abstract:
A spark spectrometry for inclusions content distribution on the surface of large size metallic materials, comprising the following steps: analyzing the surface of large-size metallic materials by spark discharge continuous excitation scanning, obtaining a mixture intensity distribution data of the solid solution and inclusions of an element on the surface of the large-size metallic materials; the relative frequency distribution diagram of spectral intensity is subjected to peak fitting of normal distribution and Gumbel distribution, obtaining an extreme value distribution data of spectral intensity of the inclusions; a size information of the inclusions in a small sample and that of the largest inclusions are correlated with the spectral intensity distribution data of inclusions, obtaining a result of content distribution of the inclusions on the surface of the large size metallic materials. The invention can quickly obtain accurate distribution information of inclusions of various elements on the surface of metallic materials.
Abstract:
The present invention belongs to the field of optical technology, disclosing a quadrilateral common-path time-modulated interferometric spectral imaging device and method. The present invention sets up a moving mirror scanning mechanism in a quadrilateral common path interferometer for generating optical path differences that vary with time, so that the quadrilateral common-path time-modulated interferometric spectral imaging device operates in the staring observation mode. The invention can make the quadrilateral common-path time-modulated interferometric spectral imaging device not only retain the advantages of common optical path spectroscopic technology, but also obtain high spectral resolution.